Venomous snail key behind therapeutic molecules

June 13, 2012
Venomous snail key behind therapeutic molecules

Can a painkiller be re-engineered to get a closer look at how proteins bind to communication channels? Researchers across Europe are using state-of-the-art computing techniques to re-engineer a painkiller from the XEP-018 protein, which was identified inside the venom of the Conus consors, a species of sea snail. CONCO, gathering 19 European partners and the J.Craig Venter Institute in the United States, is using the venomous sea snail to develop new therapeutic molecules.

'All senses in our body are transmitted to and from the brain via neurons' quoted Dr Henry Hocking from Utrecht University and a CONCO member. 'The venom of the has peptides that can disrupt this circuitry. The peptides do this by attaching themselves to the openings in communication channels located on the muscular tissues receiving the neuronal signal. This is sort of like a plug. Once attached, no signal can be transmitted to the brain and you stop feeling pain.'

Dr Hocking and colleagues used (NMR) to recreate the three-dimensional (3D) structure of the XEP-018 protein, a promising molecule discovered by CONCO members recently described by Philippe Favreau, a researcher at Atheris Laboratories in Switzerland, and colleagues in the .

Commenting on the use of NMR, Utrecht's Professor Alexandre Bonvin said: 'NMR is a technique that people might know from hospitals, where scanners are used. People are put into large magnetic fields and pictures are made of them. In NMR, we put inside and bombard them with . Instead of making pictures, we measure distances between atoms. If you know all the distances between the atoms, you can try to reconstruct a of the protein.'

It should be noted, however, that NMR does not indicate the 3D structure of these peptides. The use of computations enables NMR data to be converted into a 3D .

The team made an NMR analysis on the grid by combining gLite middleware, the next generation middleware for grid computing, with the WENMR e-Infrastructure.

'In order to calculate the 3D structures of proteins, we have to repeat the process many times,' Professor Bonvin was quoted as saying. 'We have to make thousands or tens of thousands of calculations. You get your answer within a couple of hours. WENMR, as a whole, had a submission volume of about 1.5 million jobs last year, corresponding to over 850 central processing unit (CPU) years.'

The Utrecht team is currently assessing whether it is feasible to deploy a dedicated desktop grid within the university. This would help the researchers develop their computational resources even further.

The CONCO consortium is also preparing to initiate the XEP-018 research at the clinical trial stage. 'Many analogues have been designed, synthetized and tested. The product is currently in preclinical development for the treatment of dystonia,' Reto Stöcklin, CONCO scientific team leader and head of the Swiss SME Atheris Laboratories, was quoted as saying. 'Our ultimate goal is to avoid injections and to develop a drug that everybody can use. Using specific devices, such as patches or cell-penetrating peptides to facilitate the penetration of the peptide through the skin, we believe that XEP-018 has great chances of success.'

The researchers pointed out how the WENMR study is giving developers in the global software community the means to share know-how and foster stronger cooperation.

Explore further: New technique enables study of 'challenging' proteins

More information: CONCO:
Utrecht University:

Related Stories

New technique enables study of 'challenging' proteins

November 14, 2011

Researchers from Hull, Bristol and Frankfurt have shown that a new technique for identifying molecular structure can be used effectively on small samples of biological proteins, particularly proteins that are targeted for ...

A new tool to reveal structure of proteins

March 19, 2012

A new method to reveal the structure of proteins could help researchers understand biological molecules – both those involved in causing disease and those performing critical functions in healthy cells.

Recommended for you

Scientific advances can make it easier to recycle plastics

November 17, 2017

Most of the 150 million tons of plastics produced around the world every year end up in landfills, the oceans and elsewhere. Less than 9 percent of plastics are recycled in the United States, rising to about 30 percent in ...

The spliceosome—now available in high definition

November 17, 2017

UCLA researchers have solved the high-resolution structure of a massive cellular machine, the spliceosome, filling the last major gap in our understanding of the RNA splicing process that was previously unclear.

Ionic 'solar cell' could provide on-demand water desalination

November 15, 2017

Modern solar cells, which use energy from light to generate electrons and holes that are then transported out of semiconducting materials and into external circuits for human use, have existed in one form or another for over ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.