Fastest X-ray images of tiny biological crystals

January 5, 2012
Fastest X-ray images of tiny biological crystals
The molecular structure of proteins is inferred by measurements of patterns of X-rays scattered from crystals formed from those proteins. The regular array of molecules in the crystal gives rise to strong peaks needed for measurement, shown here as balls in a three-dimensional space. The size and color of each ball represents the strength of diffraction, which encodes the three-dimensional molecular structure of the protein. Ultra-intense X-rays from a free-electron laser causes the crystal to explode, but not before high-quality data can be recorded. The paper from Barty et al shows that the explosion simply causes these diffraction peaks to terminate, without compromising the quality of data. The streaks emanating from each diffraction peak represent the time that the peak accumulates at the detector, with the high angle peaks (which encode high-resolution structural data) turning off first. Credit: Thomas White, CFEL/DESY

( -- An international research team headed by DESY scientists from the Center for Free-Electron Laser Science (CFEL) in Hamburg, Germany, has recorded the shortest X-ray exposure of a protein crystal ever achieved. The incredible brief exposure time of 0.000 000 000 000 03 seconds (30 femtoseconds) opens up new possibilities for imaging molecular processes with X-rays. This is of particular interest to biologists, but can be employed in many fields, explain lead authors Dr. Anton Barty and Prof. Henry Chapman from the German accelerator centre Deutsches Elektronen-Synchrotron DESY.

From the molecular can be determined. The shorter the X-ray pulse and the higher its intensity, the better the structural information gained. With the free-electron laser Linac Coherent Light Source (LCLS) at the US SLAC National Accelerator Laboratory the research team fired the most intense X-ray beam at a protein crystal to date: The tiny crystal was bombarded with a whamming 100 000 trillion watts per square centimeter - sunlight for comparison comes in at a mere 0.1 watts per square centimeter on average. "This way we get the most information out of the smallest crystals", Chapman explains. Having small crystals is important, as especially many aren't easily crystallized.

The emerging technology of X-ray free-electron lasers (XFELs) promises to deliver scientific breakthroughs in many areas. One of these areas is biology, where ultra-short X-ray pulses of unprecedented power from XFEL sources open up the possibility to obtain the of entire classes of proteins that could not be previously measured.

Structural biologists widely rely on the technique of protein X-ray crystallography, where X-rays scattered from form a so-called diffraction pattern. Scientists use these patterns to reconstruct a detailed atomic picture of the . However, is a major concern when working with very intense X-rays. The research team now reports that these crystals produced high-quality diffraction patterns although the crystals’ lifetime in the XFEL beam was much shorter than the used XFEL pulses (Nature Photonics, Advanced Online Publication, 18 December 2011, DOI 10.1038/NPHOTON.2011.297). The use of nanosized crystals also shows how to overcome one of the largest bottlenecks in structural biology, which is the long and often unfruitful process of growing high-quality protein crystals of sufficient size.

XFELs produce X-ray pulses that are so intense that any sample in the focused beam is completely vaporised. This explosion begins within several . However, researchers were able to obtain diffraction patterns from protein nanocrystals using significantly longer pulse lengths. “It was not at all obvious how this was possible,” says Henry Chapman from CFEL. “All the theories predicted that we should use pulse lengths of about 10 femtoseconds. But even though we increased the pulse lengths to over 300 femtoseconds and deposited over a hundred times more radiation dose than assumed acceptable, we could still see high-quality diffraction patterns.”

At first, these results appear to be counter-intuitive. “The key to understanding our unexpected results is crystallinity,” explains Chapman. In a crystal, the same structural element, the unit cell, repeats many times in several directions. Due to this structure, X-rays going through a crystal do not scatter uniformly in all directions, rather intense bundles of light emerge from the crystal only under specific angles – forming the diffraction pattern. “If the correlation between unit cells is lost during the explosion of the sample in the XFEL beam, then diffraction no longer occurs,” says Chapman. In other words, diffraction terminates once the crystal is destroyed, and any X-rays hitting the sample after this time do not contribute to the diffraction pattern initially recorded. Remarkably, the apparent measurement pulse is shorter than the incident pulse length: it is as if nanocrystals form a time switch that turns diffraction off once enough useable data is collected.

If the explanation is so straight-forward, you may ask, why has this effect not been observed before? Anton Barty from CFEL explains that the mechanisms of X-ray damage at conventional synchrotron and novel XFEL light sources are completely different. “At a synchrotron, everything happens comparatively slowly and there is time for chemical damage to occur. At an XFEL, however, the sample turns into plasma within a few femtoseconds. This is faster than any bond breaking mechanisms previously seen in synchrotron experiments. ”Indeed, during the first phases of the explosion the atoms virtually stay in their place, held in place by their own inertia, and a high-quality can be recorded. Theoretical calculations performed by fellow CFEL scientist Carl Caleman agree amazingly well with the experimental observations.

The outcome of this research benefits developments in X-ray crystallography, which is a key technique to determine protein structures. Knowledge of these structures is essential for an understanding of life’s functions and malfunctions. For biopharmaceutical companies, for example, is an important contributor to drug development. However, certain proteins, such as membrane-embedded proteins, are difficult to crystallize or they only yield crystals too small to investigate at a synchrotron. “Our ultra-fast, ultra-intense XFEL experiments on very small protein crystals show that, in the very near future, we will obtain atomic resolution structures of systems that have been very challenging so far,” says Henry Chapman.

The future is bright. With the European XFEL currently being built in Hamburg, the world’s most powerful XFEL will start its operation in 2015. “With our technique we need about one million X-ray pulses to determine a protein structure,” Chapman says. “Currently, this is a matter of hours. At the European XFEL facility it will be a matter of minutes.”

Explore further: Scientists study processes using high-intensity ultrashort X-ray pulses

More information: CFEL is a joint venture of DESY, the Max Planck Society and the University of Hamburg.

Related Stories

First X-ray lasing of SACLA

June 17, 2011

RIKEN and the Japan Synchrotron Radiation Research Institute (JASRI) have successfully produced a first beam of X-ray laser light with a wavelength of 1.2 Angstroms. This light was created using SACLA, a cutting-edge X-ray ...

SACLA X-ray free electron laser sets new record

June 13, 2011

RIKEN and the Japan Synchrotron Radiation Research Institute (JASRI) have successfully produced a beam of X-ray laser light with a wavelength of 1.2 Angstroms, the shortest ever measured. This record-breaking light was created ...

Recommended for you

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

Study shows how to get sprayed metal coatings to stick

November 21, 2017

When bonding two pieces of metal, either the metals must melt a bit where they meet or some molten metal must be introduced between the pieces. A solid bond then forms when the metal solidifies again. But researchers at MIT ...

Imaging technique unlocks the secrets of 17th century artists

November 21, 2017

The secrets of 17th century artists can now be revealed, thanks to 21st century signal processing. Using modern high-speed scanners and the advanced signal processing techniques, researchers at the Georgia Institute of Technology ...


Adjust slider to filter visible comments by rank

Display comments: newest first

4.7 / 5 (47) Jan 05, 2012
That's a short time. Light would only travel about 0.009 mm, in that time.
1.3 / 5 (4) Jan 05, 2012
Concentrate that .1 watt per square centimeter of sunlight into an area of .000000000001 square meter, then extrapolate that power as though each point in a square centimeter recieved that much power and you would see the sunlight has more energy that the x-ray. The laser does not cover an area of 1 square centimeter and if it were diffussed to the point that it did, it would hardly be measurable. Add to that the fact that that energy only last for 30 femtoseconds and the work it can do is miniscule. I am so sick of physicist's exageration and misenterpretation of data. Supercolliders create trillions of degrees over an area of a trillionth of a centimeter for a trillionth of a second. Big f-ing deal. It wouldn't even leave a blister if they held it in their hand.
4.7 / 5 (47) Jan 05, 2012
What's impressive about it is not the total magnitude of energy used, It's the amount of energy concentrated into a tiny area. Also, they never told you the total area of the radiation..

It's probably alot less impressive to vaporize an elephant.
4.2 / 5 (5) Jan 05, 2012
I am so sick of physicist's exageration and misenterpretation of data.

Wow, you're a loser. The article said nothing incorrect. 100PW/cm^2 is not an INTERPRETATION, it is an EXPERIMENTAL FACT.
Add to that the fact that that energy only last for 30 femtoseconds and the work it can do is miniscule.

It's not about work, it's about whether the lattice phase-space remains undistorted over the duration of the imaging (which, according to the X-ray experimenters, it did, despite the crystal exploding on a human timescale).

Read the article before slamming it with rubbish.
3.8 / 5 (4) Jan 06, 2012
I am so sick of physicist's exageration and misenterpretation of data. Supercolliders create trillions of degrees over an area of a trillionth of a centimeter for a trillionth of a second. Big f-ing deal. It wouldn't even leave a blister if they held it in their hand.

Let me guess, you're an ignorant 20 something year old guy with no science background whose head is filled with lasers, star wars and video games?

What's impressive about the technology of Free-Electron Lasers is that they are able to literally record images and "movies" of time-resolved systems on the molecular and atomic scale! I cannot begin to describe to you the potential this technology holds for Biology, Chemistry, Physics, Materials Science, Nanotechnology and many other fields because you probably won't understand a word due to your ignorance!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.