Related topics: galaxies · physical review letters · dark matter · moon · nasa

Quantum spacetime on a quantum simulator

Quantum simulation plays an irreplaceable role in diverse fields, beyond the scope of classical computers. In a recent study, Keren Li and an interdisciplinary research team at the Center for Quantum Computing, Quantum Science ...

Gravity surveys using a mobile atom interferometer

Mobile gravimetry is an important technique in metrology, navigation, geodesy and geophysics. Although atomic gravimeters are presently used for accuracy, they are constrained by instrumental fragility and complexity. In ...

Optimal quantum computation linked to gravity

Information and gravity may seem like completely different things, but one thing they have in common is that they can both be described in the framework of geometry. Building on this connection, a new paper suggests that ...

page 1 from 40

Gravitation

Gravitation is a natural phenomenon by which objects with mass attract one another. In everyday life, gravitation is most commonly thought of as the agency which lends weight to objects with mass. Gravitation compels dispersed matter to coalesce, thus accounting for the existence of the Earth, the Sun, and most of the macroscopic objects in the universe. It is responsible for keeping the Earth and the other planets in their orbits around the Sun; for keeping the Moon in its orbit around the Earth; for the formation of tides; for convection, by which fluid flow occurs under the influence of a temperature gradient and gravity; for heating the interiors of forming stars and planets to very high temperatures; and for various other phenomena observed on Earth. Modern physics describes gravitation using the general theory of relativity, in which gravitation is a consequence of the curvature of spacetime which governs the motion of inertial objects. The simpler Newton's law of universal gravitation provides an accurate approximation for most calculations.

The terms gravitation and gravity are mostly interchangeable in everyday use, but a distinction is made in scientific circles. "Gravitation" is a general term describing the phenomenon by which bodies with mass are attracted to one another, while "gravity" refers specifically to the net force exerted by the Earth on objects in its vicinity as well as by other factors, such as the Earth's rotation.

This text uses material from Wikipedia, licensed under CC BY-SA