Octopus-inspired wearable sensor

Wearable electronics that adhere to skin are an emerging trend in health sensor technology for their ability to monitor a variety of human activities, from heart rate to step count. But finding the best way to stick a device ...

Strain enables new applications of 2-D materials

Superconductors' never-ending flow of electrical current could provide new options for energy storage and superefficient electrical transmission and generation, to name just a few benefits. But the signature zero electrical ...

Colorful solution to a chemical industry bottleneck

The nanoscale water channels that nature has evolved to rapidly shuttle water molecules into and out of cells could inspire new materials to clean up chemical and pharmaceutical production. KAUST researchers have tailored ...

Quantum computing with graphene plasmons

A novel material that consists of a single sheet of carbon atoms could lead to new designs for optical quantum computers. Physicists from the University of Vienna and the Institute of Photonic Sciences in Barcelona have shown ...

No ink needed for these graphene artworks

When you read about electrifying art, "electrifying" isn't usually a verb. But an artist working with a Rice University lab is in fact making artwork that can deliver a jolt.

Researchers design a strategy to make graphene luminescent

Lighter than aluminum, harder than a diamond, more elastic than rubber and tougher than steel. These are only a few of the characteristics of graphene, a super material that acts as an excellent heat and electrical conductor. ...

page 1 from 23

Graphene

Graphene is a one-atom-thick planar sheet of sp2-bonded carbon atoms that are densely packed in a honeycomb crystal lattice. It can be viewed as an atomic-scale chicken wire made of carbon atoms and their bonds. The name comes from GRAPHITE + -ENE; graphite itself consists of many graphene sheets stacked together.

The carbon-carbon bond length in graphene is approximately 0.142 nm. Graphene is the basic structural element of some carbon allotropes including graphite, carbon nanotubes and fullerenes. It can also be considered as an infinitely large aromatic molecule, the limiting case of the family of flat polycyclic aromatic hydrocarbons called graphenes.

Measurements have shown that graphene has a breaking strength 200 times greater than steel, making it the strongest material ever tested.

This text uses material from Wikipedia, licensed under CC BY-SA