A graphene superconductor that plays more than one tune

Researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a graphene device that's thinner than a human hair but has a depth of special traits. It easily switches from ...

Will your future computer be made using bacteria?

In order to create new and more efficient computers, medical devices, and other advanced technologies, researchers are turning to nanomaterials: materials manipulated on the scale of atoms or molecules that exhibit unique ...

Research reveals exotic quantum states in double-layer graphene

Researchers from Brown and Columbia Universities have demonstrated previously unknown states of matter that arise in double-layer stacks of graphene, a two-dimensional nanomaterial. These new states, known as the fractional ...

On-demand control of terahertz and infrared waves

The ability to control infrared and terahertz waves using magnetic or electric fields is one of the great challenges in physics that could revolutionise opto-electronics, telecommunications and medical diagnostics. A theory ...

Branching out: Making graphene from gum trees

Graphene is the thinnest and strongest material known to humans. It's also flexible, transparent and conducts heat and electricity 10 times better than copper, making it ideal for anything from flexible nanoelectronics to ...

Left out to dry: A more efficient way to harvest algae biomass

A team at the University of Tsukuba introduced a new procedure of harvesting energy and organic molecules from algae using nanoporous graphene and porous graphene foams. By developing a reusable system that can evaporate ...

Producing graphene from carbon dioxide

The general public knows the chemical compound of carbon dioxide as a greenhouse gas in the atmosphere and because of its global-warming effect. However, carbon dioxide can also be a useful raw material for chemical reactions. ...

Graphenes now go monolayer and single crystalline

IBS-CMCM scientists have reported a truly single layer (i.e., adlayer-free) large area graphene film on large area copper foils. They refined the chemical vapor deposition (CVD) growth method by eliminating all carbon impurities ...

Bionic catalysts to produce clean energy

Mixing microbes with carbon nanomaterials could help the transition to renewable energy. KAUST research shows microbes and nanomaterials can be used together to form a biohybrid material that performs well as an electrocatalyst. ...

page 1 from 2

Graphene

Graphene is a one-atom-thick planar sheet of sp2-bonded carbon atoms that are densely packed in a honeycomb crystal lattice. It can be viewed as an atomic-scale chicken wire made of carbon atoms and their bonds. The name comes from GRAPHITE + -ENE; graphite itself consists of many graphene sheets stacked together.

The carbon-carbon bond length in graphene is approximately 0.142 nm. Graphene is the basic structural element of some carbon allotropes including graphite, carbon nanotubes and fullerenes. It can also be considered as an infinitely large aromatic molecule, the limiting case of the family of flat polycyclic aromatic hydrocarbons called graphenes.

Measurements have shown that graphene has a breaking strength 200 times greater than steel, making it the strongest material ever tested.

This text uses material from Wikipedia, licensed under CC BY-SA