Related topics: genes

Chemists produce new-to-nature enzyme containing boron

Boronic acid has been used in organic chemistry for decades, even though it is not present in any organism. "It gives rise to different chemical reactions than those we find in nature," explains Gerard Roelfes, Professor ...

Model predicts future spread of box tree moth in North America

CABI scientists have led research with collaborations from the University of Toronto and University of Guelph, both in Canada, to update a model which predicts the future spread of the box tree moth (Cydalima perspectalis) ...

Exploring lysosomal biology: Current approaches and methods

Lysosomes are critical for cellular degradation, characterized by their acidic pH and array of hydrolytic enzymes. They degrade materials through endocytosis, phagocytosis, and autophagy, recycling essential components. Lysosomes ...

Microbiome studies help explore treatments for genetic disorders

A collaboration has led to the identification, in a bacterium of the intestine, of new CRISPR-Cas9 molecules that could have a clinical potential to treat genetic diseases such as retinitis pigmentosa, through sub-retinal ...

Regulating branch development of petunias

Branching is a pivotal determinant of plant architecture, not only influencing the capacity of the plant to adapt to its environment but also significantly impacting crop yield, ornamental characteristics, and production ...

page 1 from 40

Genetics

Genetics (from Ancient Greek γενετικός genetikos, “genitive” and that from γένεσις genesis, “origin”), a discipline of biology, is the science of heredity and variation in living organisms. The fact that living things inherit traits from their parents has been used since prehistoric times to improve crop plants and animals through selective breeding. However, the modern science of genetics, which seeks to understand the process of inheritance, only began with the work of Gregor Mendel in the mid-nineteenth century. Although he did not know the physical basis for heredity, Mendel observed that organisms inherit traits via discrete units of inheritance, which are now called genes.

Genes correspond to regions within DNA, a molecule composed of a chain of four different types of nucleotides—the sequence of these nucleotides is the genetic information organisms inherit. DNA naturally occurs in a double stranded form, with nucleotides on each strand complementary to each other. Each strand can act as a template for creating a new partner strand—this is the physical method for making copies of genes that can be inherited.

The sequence of nucleotides in a gene is translated by cells to produce a chain of amino acids, creating proteins—the order of amino acids in a protein corresponds to the order of nucleotides in the gene. This relationship between nucleotide sequence and amino acid sequence is known as the genetic code. The amino acids in a protein determine how it folds into a three-dimensional shape; this structure is, in turn, responsible for the protein's function. Proteins carry out almost all the functions needed for cells to live. A change to the DNA in a gene can change a protein's amino acids, changing its shape and function: this can have a dramatic effect in the cell and on the organism as a whole. Two additional factors that can change the shape of the protein are pH and temperature.

Although genetics plays a large role in the appearance and behavior of organisms, it is the combination of genetics with what an organism experiences that determines the ultimate outcome. For example, while genes play a role in determining an organism's size, the nutrition and other conditions it experiences after inception also have a large effect.

This text uses material from Wikipedia, licensed under CC BY-SA