Related topics: genes

Mouse genetics influences the microbiome more than environment

Genetics has a greater impact on the microbiome than maternal birth environment, at least in mice, according to a study published this week in Applied and Environmental Microbiology. Vaginal birth, known to transfer microbiota ...

Parasitic plants use stolen genes to make them better parasites

Some parasitic plants steal genetic material from their host plants and use the stolen genes to more effectively siphon off the host's nutrients. A new study led by researchers at Penn State and Virginia Tech reveals that ...

When plant roots learned to follow gravity

Highly developed seed plants evolved deep root systems that are able to sense Earth's gravity. The how and when of this evolutionary step has, until now, remained unknown. Plant biologists at the Institute of Science and ...

Machine learning approach significantly expands inovirus diversity

To answer the question, "Where's Waldo?" readers need to look for a number of distinguishing features. Several characters may be spotted with a striped scarf, striped hat, round-rimmed glasses, or a cane, but only Waldo will ...

Hidden genetic variations power evolutionary leaps

Laboratory populations that quietly amass 'cryptic' genetic variants are capable of surprising evolutionary leaps, according to a paper in the July 26 issue of Science. A better understanding of cryptic variation may improve ...

page 1 from 4

Genetics

Genetics (from Ancient Greek γενετικός genetikos, “genitive” and that from γένεσις genesis, “origin”), a discipline of biology, is the science of heredity and variation in living organisms. The fact that living things inherit traits from their parents has been used since prehistoric times to improve crop plants and animals through selective breeding. However, the modern science of genetics, which seeks to understand the process of inheritance, only began with the work of Gregor Mendel in the mid-nineteenth century. Although he did not know the physical basis for heredity, Mendel observed that organisms inherit traits via discrete units of inheritance, which are now called genes.

Genes correspond to regions within DNA, a molecule composed of a chain of four different types of nucleotides—the sequence of these nucleotides is the genetic information organisms inherit. DNA naturally occurs in a double stranded form, with nucleotides on each strand complementary to each other. Each strand can act as a template for creating a new partner strand—this is the physical method for making copies of genes that can be inherited.

The sequence of nucleotides in a gene is translated by cells to produce a chain of amino acids, creating proteins—the order of amino acids in a protein corresponds to the order of nucleotides in the gene. This relationship between nucleotide sequence and amino acid sequence is known as the genetic code. The amino acids in a protein determine how it folds into a three-dimensional shape; this structure is, in turn, responsible for the protein's function. Proteins carry out almost all the functions needed for cells to live. A change to the DNA in a gene can change a protein's amino acids, changing its shape and function: this can have a dramatic effect in the cell and on the organism as a whole. Two additional factors that can change the shape of the protein are pH and temperature.

Although genetics plays a large role in the appearance and behavior of organisms, it is the combination of genetics with what an organism experiences that determines the ultimate outcome. For example, while genes play a role in determining an organism's size, the nutrition and other conditions it experiences after inception also have a large effect.

This text uses material from Wikipedia, licensed under CC BY-SA