This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

proofread

A mathematical bridge between the huge and the tiny

particle physics
Credit: Pixabay/CC0 Public Domain

A mathematical link between two key equations—one that deals with the very big and the other, the very small—has been developed by a young mathematician in China.

The mathematical discipline known as differential geometry is concerned with the geometry of smooth shapes and spaces. With roots going back to antiquity, the field flourished in the early 20th century, enabling Einstein to develop his and other physicists to develop and the Standard Model of particle physics.

Gao Chen, a 29-year-old mathematician at the University of Science and Technology of China in Hefei, specializes in a branch known as complex differential geometry. Its complexity is not in dealing with complicated structures, but rather because it is based on complex numbers—a system of numbers that extends everyday numbers by including the square root of -1.

This area appeals to Chen because of its connections with other fields. "Complex differential geometry lies at the intersection of analysis, algebra, and ," he says. "Many tools can be used to study this area."

Chen has now found a new link between two important equations in the field: the Kähler–Einstein equation, which describes how mass causes curvature in space–time in general relativity, and the Hermitian–Yang–Mills equation, which underpins the Standard Model of particle physics.

Chen was inspired by his Ph.D. supervisor Xiuxiong Chen of New York's Stony Brook University, to take on the problem. "Finding solutions to the Hermitian–Yang–Mills and the Kähler–Einstein equations are considered the most important advances in complex differential geometry in previous decades," says Gao Chen. "My results provide a connection between these two key results."

"The Kähler –Einstein equation describes very large things, as large as the universe, whereas the Hermitian–Yang–Mills equation describes tiny things, as small as quantum phenomena," explains Gao Chen. "I've built a bridge between these two equations." Gao Chen notes that other bridges existed previously, but that he has found a new one.

"This bridge provides a new key, a new tool for theoretical research in this field," Gao Chen adds. His paper describing this bridge was published in the journal Inventiones mathematicae in 2021.

In particular, the finding could find use in —the leading contender of theories that researchers are developing in their quest to unite quantum physics and relativity. "The deformed Hermitian–Yang–Mills equation that I studied plays an important role in the study of string theory," notes Gao Chen.

Gao Chen now has his eyes set on other important problems, including one of the seven Millennium Prize Problems. These are considered the most challenging in the field by mathematicians and carry a $1 million prize for a correct solution. "In the future, I hope to tackle a generalization of the Kähler–Einstein ," he says. "I also hope to work on other Millennium Prize problems, including the Hodge conjecture."

Provided by University of Science and Technology of China

Citation: A mathematical bridge between the huge and the tiny (2024, April 29) retrieved 12 July 2024 from https://phys.org/news/2024-04-mathematical-bridge-huge-tiny.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Astrophysicist proposes a new theory of gravity without a conservation law

87 shares

Feedback to editors