This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

trusted source

written by researcher(s)

proofread

Ecologists: Climate change is making trees bigger, but also weaker

Climate change is making trees bigger, but also weaker
Credit: AI-generated image (disclaimer)

As global temperatures rise, trees in colder areas are benefiting from an extended growing season. A longer growing season results in thicker growth rings and, as a result, higher overall wood production.

However, studies suggest that longer growing seasons contribute to weakening the wood, making trees structurally weaker. The poor quality of wood means that trunks break more easily.

We are forest ecologists who specialize in the anatomy and growth of wood. Let's examine the most recent scientific studies available to try to map the future of our forests and analyze how the changing growing season is determining the characteristics of the wood produced.

Wood: What is it?

Wood is the product of the progressive accumulation of cells—xylem cells—in trees. The purpose of this accumulation is to renew the sap transport system and to provide mechanical support for the stem (trunk), branches and leaves.

A is the product of a growing season which, in temperate and boreal environments, runs from spring to autumn. Each year a new growth ring is formed. The thickness of a ring is dependent on a combination of factors inherent to the tree (its species and ) and (such as soil type, sun exposure, climate and competition between neighboring trees).

In some species, especially in conifers, it can be quite easy to distinguish the rings from each other. This is due to the fact that during the growing season the tree produces two types of wood, characterized by cells with different forms and functions.

In spring, the tree produces many large, light-colored cells with a thin cell wall. This part of the annual ring is called "earlywood." In late summer, growth slows down. The cells become smaller, but their walls become thicker. This "latewood" is the darker portion of the annual ring.

The characteristics of the cells of wood are particularly important and are of great interest in ecological and economic terms. First of all, wood cell walls stock most of the carbon assimilated from the atmosphere by trees. Thus, a thicker cell wall means the tree is absorbing a greater amount of carbon. Secondly, the ratio of the number of earlywood cells to latewood cells determines the density of the wood, and, therefore, its potential use and material value.

Trees are growing faster

Over the past century, in the temperate regions of North America and Europe, trees have shown a faster growth rate, up to 77 percent higher than in the previous century. This increase is related to the production of thicker growth rings.

At first sight, faster growth could be interpreted as higher biomass production, which would lead to a higher carbon storage capacity and, therefore, a greater contribution of our forests to the fight against climate change. In other words, a higher growth rate could mean that more wood would be available for our different needs.

But as William Shakespeare wrote: "Oft expectation fails, and most oft there where most it promises."

Trees die younger

A study by the Technical University of Munich in Germany analyzed the growth rate of trees and the characteristics of their wood over the last century. They found that as the growth rate increased, the density of the wood dropped by eight to 12 percent.

Furthermore, as wood density decreased, their carbon content also decreased by about 50 percent. This suggested that the trees extracted less carbon dioxide (CO2) from the atmosphere.

In addition to a reduced capacity to absorb and store atmospheric carbon, reduced wood density can weaken the structural strength of the stems. Wood fulfills the important function of supporting trees. Reducing its density is therefore accompanied by a lower resistance to mechanical stresses that might come from wind or the effect of gravity on steep slopes.

To complicate matters further, another recent study has shown an association between growth and lifespan in trees: fast-growing trees have a shorter life expectancy.

Too much is not enough

In our latest study, we quantified the relationships between the length of growing season, productivity and wood cell characteristics in balsam fir.

The study confirmed that trees with a longer growing season produce more wood cells and a thicker growth ring. However, higher growth also corresponds to a change in the ratio between the amount of earlywood and latewood. For every day that the growing season length increased, the trees produced one more cell of earlywood.

The increase in the ratio between earlywood and latewood is reflected in the decrease in density. This shows that an increase in volume growth does not necessarily correspond to a higher biomass production.

What does the future hold for our forests?

The global average temperature has exceeded the pre-industrial average by about 1.15°C (1850-1900), and is expected to rise further in the coming years. Warmer temperatures could lengthen the growing of trees and consequently increase their growth rate.

While, on the one hand, this may lead to an expansion of forests globally, the rate of carbon uptake from forests is likely to decrease.

Although our forests will make a substantial contribution to the fight against climate change, the results of these studies are further evidence that environmental problems cannot be solved without taking direct action on the causes that trigger global change.

In the context of , reducing the anthropogenic emissions that cause global warming is not something we can afford to negotiate or postpone.

Provided by The Conversation

This article is republished from The Conversation under a Creative Commons license. Read the original article.The Conversation

Citation: Ecologists: Climate change is making trees bigger, but also weaker (2023, June 14) retrieved 27 April 2024 from https://phys.org/news/2023-06-ecologists-climate-trees-bigger-weaker.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Trees may benefit from earlier start of growing season in cold humid areas

9 shares

Feedback to editors