This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

proofread

Bridging the gap for precision medicine: Nanofluidic aptamer nanoarray measures individual proteins

Bridging the gap for precision medicine: nanofluidic aptamer nanoarray measures individual proteins
Schematic illustration of the NANa principle for stochastically capturing and digitally detecting single proteins. Credit: Yan Xu, Osaka Metropolitan University

In the evolving world of precision medicine, the need for methods that can measure biomolecules with supreme accuracy and specificity is paramount. Recognizing this, Associate Professor Yan Xu of the Graduate School of Engineering at Osaka Metropolitan University and his international research team have made a great stride in this direction.

They have developed an innovative nanofluidic device capable of capturing stochastically and detecting them digitally at their naturally high concentrations. This breakthrough could potentially lay the foundation for the future of personalized disease prevention and treatment.

Precision medicine aims to tailor prevention and treatment strategies based on individual genetic data, environmental factors, lifestyle, and other determinants. Integral to this is the accurate measurement of biomolecules, such as genes and proteins, within . However, until now, there have been no tools capable of simultaneously handling the minuscule volume of a single cell's content—typically on the order of picoliters—and quantifying biomolecules in high-concentration cellular environments.

The device, named the Nanofluidic Aptamer Nanoarray (or NANa for short), is a nanochannel-based chip designed for the digital assay of individual molecules in a sample with an ultrasmall volume equivalent to that of a single cell. Using known as aptamers, NANa can stochastically capture and digitally detect single molecules of target proteins even within high-concentration samples. These aptamers, which bind to specific molecules, are densely arrayed within the nanochannels of the device.

Bridging the gap for precision medicine: nanofluidic aptamer nanoarray measures individual proteins
Illustrative image of NANa. Credit: Yan Xu, Osaka Metropolitan University

Looking forward, the researchers plan to conduct practical demonstrations with actual cell samples, digitize the measurement data obtained, and explore the potential of integrating AI-based image recognition technology and biological big data.

"Humans are complex organisms consisting of a vast number of cells," explained Professor Xu. "We hope NANa, which digitizes information on the number of biomolecules in , will serve as a bridge between and , paving the way for precision medicine in the future."

The research results are set to be published in Small.

More information: Yan Xu et al, Nanofluidic aptamer nanoarray to enable stochastic capture of single proteins at normal concentrations, Small (2023). DOI: 10.1002/smll.202301013

Journal information: Small

Citation: Bridging the gap for precision medicine: Nanofluidic aptamer nanoarray measures individual proteins (2023, June 23) retrieved 10 September 2024 from https://phys.org/news/2023-06-bridging-gap-precision-medicine-nanofluidic.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Electronic biosensor uses DNA aptamers for detecting biomarkers in whole blood samples

95 shares

Feedback to editors