This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

trusted source

proofread

Scientists detect dimer product ROOR generated by self-reaction of ethyl peroxy radicals

Scientists detect dimer product ROOR generated by self-reaction of ethyl peroxy radicals
VUV lamp photoionization mass spectra measured (a) without O2 and (b) with O2 in the microwave discharge flow tube, with five times magnified data in red. Credit: Lin Xiaoxiao

Organic peroxy radicals (RO2) are important intermediates in the degradation of atmospheric volatile organic compounds. It not only participates in the cycling of atmospheric radicals and influences oxidizing capacity of the atmosphere, but also controls the formation of secondary pollutants.

Under low NOx conditions, peroxy radicals react mainly with HO2 radicals, as well as with themselves, and their tend to have low volatility and readily enter the particulate phase. However, the associated double reactions are complex, the chemical mechanisms are poorly understood and experimental and are extremely challenging.

A collaborative team led by Prof. Weijun Zhang from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences studied the self-reaction of ethyl peroxy radicals ( C2H5O2). They combined advanced vacuum ultraviolet (VUV) photoionization mass spectrometry with theoretical calculations, providing a new insight into the direct measurement of the elusive dimeric product organic peroxides (ROOR).

The results have been published in the International Journal of Molecular Sciences.

Together with scientists from the Université de Lille, France, the researchers investigated the self-reactions of C2H5O2. In addition to the main products CH3CHO, C2H5OH, C2H5O and C2H5OOH, the dimeric product C2H5OOC2H5 from the self-reaction of C2H5O2 was clearly observed for the first time in the VUV photoionization mass spectrum.

The kinetic experiments of the self-reaction of C2H5O2 and were performed to verify the reaction mechanism of the ROOR product channel. The adiabatic ionization energy of C2H5OOC2H5 was also determined by measuring the synchrotron photoionization efficiency spectrum.

Scientists detect dimer product ROOR generated by self-reaction of ethyl peroxy radicals
Photoionization spectrum of C2H5OOC2H5 and its calculated results in red. Credit: Xiaoxiao

Combined with Franck-Condon factor simulations, the neutral and ionic structures of C2H5OOC2H5 were revealed.

"Our study shows that the ROOR product channel is not negligible in the small RO2 self-reactions," said Lin Xiaoxiao, a member of the team.

More information: Hao Yue et al, Dimeric Product of Peroxy Radical Self-Reaction Probed with VUV Photoionization Mass Spectrometry and Theoretical Calculations: The Case of C2H5OOC2H5, International Journal of Molecular Sciences (2023). DOI: 10.3390/ijms24043731

Citation: Scientists detect dimer product ROOR generated by self-reaction of ethyl peroxy radicals (2023, March 16) retrieved 25 June 2024 from https://phys.org/news/2023-03-scientists-dimer-product-roor-generated.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Mechanism of Cl-initiated oxidation of methacrolein under NOx-free conditions

14 shares

Feedback to editors