This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:


peer-reviewed publication

trusted source


Multi-layered 'space skin' can help future satellites and spacecraft harvest energy

Multi-layered ‘space skin’ can help future satellites and spacecraft harvest energy
Graphical abstract. Credit: ACS Nano (2023). DOI: 10.1021/acsnano.2c09737

A research team has shown that their innovative nano-coating, called the Multifunctional Nanobarrier Structure (MFNS), can reduce the operating temperatures of space-qualified structures from 120 degrees Celsius to 60 degrees Celsius.

Thanks to its custom-built, room temperature application system, researchers were able to show that it is possible to use the MFNS alongside a craft's sensors and advanced composite materials.

Professor Ravi Silva, corresponding author of the study and Director of the Advanced Technology Institute at the University of Surrey, said,

"Space is a wondrous but for us humans and other human-made structures. While solutions already on the market offer protection, they are bulky and can be restrictive when it comes to thermal control."

"Our new nano barrier is able to not only provide radiation and but also harvest energy for use at a later date."

Spacecraft must account for huge variations of solar illumination and space radiation to ensure that their payloads work as designed. Spacecraft temperature is maintained by delicately balancing radiation and external weather with heat produced internally. Atomic oxygen (AO) is created when oxygen molecules break apart, a process made easier in space because of the abundance of ultraviolet (UV) radiation. AO then reacts with organic surfaces on and degrades them.

The MSFN consists of a buffer layer made of poly(p-xylylene) and a diamond-like-carbon superlattice layer to give it a mechanically and environmentally ultra-stable platform.

This means that the MSFN is able to protect a craft from AO and UV radiation. Its dielectric nature (transparent across a wide range of radio frequencies) means it can also be coated on highly sensitive payloads and structures, such as antennas, without interfering significantly with performance.

Interestingly, the team found it is possible to modify how much AO and UV a craft can absorb and harvest while a craft is in .

Paolo Bianco, Global R&T Cooperation Manager at Airbus Defense and Space said, "Our with the University of Surrey has again proved fruitful with this latest development of a coating to protect satellites in orbit."

Professor Silva concluded, "The University of Surrey has a long and productive partnership with Airbus. Whether developing state-of-the-art nanostructures to help protect space craft or producing world leading electric space thrusters with the Surrey Space Center, this is a relationship that our local region and indeed the country should be proud of."

The study has been published in ACS Nano.

More information: Michal Delkowski et al, Multifunctional Nanostructures with Controllable Band Gap Giving Highly Stable Infrared Emissivity for Smart Thermal Management, ACS Nano (2023). DOI: 10.1021/acsnano.2c09737

Journal information: ACS Nano

Citation: Multi-layered 'space skin' can help future satellites and spacecraft harvest energy (2023, January 16) retrieved 25 April 2024 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Breakthrough material can protect satellites from ultraviolet radiation and atomic oxygen in low-Earth orbit


Feedback to editors