Nanorods overcome tigecycline resistance of Klebsiella pneumonia

Nanorods overcome tigecycline resistance of Klebsiella pneumonia
Schematic depiction of the fabrication of the nanorods and the mechanism of overcoming the tigecycline resistance of TRKP. TIG: tigecycline; Ts-TPGS/Cap/TIG: tigecycline-loaded TPGS and S-thanatin functionalized calcium phosphate nanorods; TRKP: tigecycline-resistant Klebsiella pneumonia. LPS: lipopolysaccharide. Credit: Zhejiang University School of Medicine

Long-term and excessive use of antibiotics has caused the spread of antibiotic resistance. The time- and cost-consuming process of new antibiotic development results in the much slower emergence of new antibacterial drugs than that of bacterial resistance. The emergence of superbugs has been growing to become a dominant challenge in human health. Tigecycline is regarded as the last line of defense to combat multidrug-resistant Klebsiella pneumoniae. However, increasing utilization has led to rising drug resistance and treatment failure. Tigecycline resistance of Klebsiella pneumoniae remains a global problem that urgently needs to be solved.

On June 29, 2022, Prof. Du Yongzhong from College of Pharmaceutical Sciences, Zhejiang University, Prof. Lu Xiaoyang and Jiang Saiping from The First Affiliated Hospital, Zhejiang University School of Medicine co-published an article entitled "TPGS-based and S-thanatin functionalized nanorods for overcoming drug resistance in Klebsiella pneumonia" in the journal Nature Communications. Their research demonstrates that D-alpha tocopheryl polyethylene glycol succinate(TPGS)-modified and S-thanatin peptide (Ts)-functionalized nanorods based on calcium phosphate nanoparticles can overcome tigecycline resistance of Klebsiella pneumonia.

First, the researchers prepared the tigecycline-loaded TPGS-modified and S-thanatin peptide-functionalized nanorods, Ts-TPGS/Cap/TIG (TTCT), and characterized the properties of TTCT. They found that the prepared Ts-TPGS/Cap nanorods could effectively encapsulate TIG and achieve sustained drug release. The TTCT with of ~25 nm would not disassemble in circulation and displayed excellent stability at room temperature.

Next, the researchers evaluated the antibacterial activity of TTCT and explored the underlying mechanisms of overcoming resistance. They found that Ts-TPGS/Cap exhibited targeting and enhanced accumulation in both Klebsiella pneumonia (KPN) and TRKP through the binding between Ts and LPS. TPGS could exert its inhibitory capacity on the activity of efflux pumps and the expression of acrA, acrB and ramA in TRKP. In this way, the TIG concentration inside bacteria was significantly higher in the TTCT group than other groups. The synergistic antibacterial capacity between Ts and TIG further enhanced the antibacterial activity TTCT, thus overcoming the drug resistance of TRKP.

In mice with pneumonia, Ts-TPGS/Cap specifically accumulated in the lungs. TTCT administration could significantly reduce the and neutrophil counts in , and decrease the total cell and C reactive protein (CRP) levels in bronchoalveolar lavage fluid (BALF). Moreover, TTCT was capable of ameliorating neutrophil infiltration in the lungs and reducing bacterial colonies from BALF, thus apparently increasing the survival rates of mice with pneumonia caused by TRKP.

Overall, a TPGS-based and Ts-modified nanodrug delivery system was designed. The prepared nanorods can enhance tigecycline accumulation in bacteria via the on efflux pumps exerted by TPGS and the targeting capacity of S-thanatin to bacteria. The synergistic antibacterial capacity between S-thanatin and tigecycline further enhances the antibacterial activity, thus overcoming the tigecycline resistance of TRKP. The findings provide a therapeutic strategy for infections diseases caused by MDR gram-negative bacteria.


Explore further

New drug candidate fights off more than 300 drug-resistant bacteria

More information: Xiaojuan Wang et al, TPGS-based and S-thanatin functionalized nanorods for overcoming drug resistance in Klebsiella pneumonia, Nature Communications (2022). DOI: 10.1038/s41467-022-31500-3
Journal information: Nature Communications

Provided by Zhejiang University School of Medicine
Citation: Nanorods overcome tigecycline resistance of Klebsiella pneumonia (2022, August 19) retrieved 26 September 2022 from https://phys.org/news/2022-08-nanorods-tigecycline-resistance-klebsiella-pneumonia.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
104 shares

Feedback to editors