International team uncovers mystery behind 'coffee ring' formation

International team uncovers mystery behind 'coffee ring' formation
A new study has discovered the mystery behind 'coffee rings' and how it could advance research in blood diagnostics. Credit: Monash University

An international research team, led by Monash University, has discovered for the first time the mystery behind the formation of 'coffee rings' by examining the contact angle of droplets onto a surface, and how they dry.

The involving Monash University and Cambridge University also developed a that is capable of predicting when a ring could be observed in hard spherical particle systems.

Professor Gil Garnier, Director of BioPRIA (Bioresource Processing Research Institute of Australia) in the Department of Chemical Engineering at Monash University, led an international team to explore how patterns formed from evaporating droplets—a phenomenon that has mystified physicists for years.

Professor Garnier said this discovery, created by Dr. Michael Hertag from BioPRIA, could open up doors in the blood diagnostics arena, especially for the discovery of treatments for anemia and other blood diseases.

Pattern formation is a common occurrence in drying colloidal liquids, such as milk, coffee, paint, aerosols, and in blood.

Most common in droplets is a ring distribution where the liquid particles have relocated to the edge, which is referred to as a coffee ring, when drying. This deposit is unfavorable in many and is of fundamental interest experts in the building, medical, and engineering professions.

They concluded that the contact angles at which a droplet is placed on a wetted surface determines the prevalence of coffee angles. When the droplet is placed at a high contact angle, no coffee rings are present.

"Our research identified the contact angle formed by the suspension of droplets on the surface and its solids content as the two important governing variables to coffee ring formation," Professor Garnier said.

"Although successful modeling has been achieved previously, we show here for the first time that for each contact angle, there is a critical initial colloid volume fraction over which no ring-like pattern will be formed.

"Essentially, the lower the contact angle, the higher likelihood that ring profiles will be found."

When a droplet is placed on a surface, it quickly reaches an apparent equilibrium position that can, for small droplets, be defined solely by contact and radius.

The rate of evaporation and the variation of mass fluidity on the drop's surface is dependent on many factors, including the vapor pressure of the fluid, the geometry of the droplet's surface as well as the velocity and partial pressure of the surrounding atmosphere.

Drying experiments were conducted by placing a 6µL droplet of solution onto a substrate with an Eppendorf pipette. The droplet was left to dry in a humidity and temperature controlled room held at 23 degrees C and 50 percent relative humidity.

"We showed that the presence or absence of a coffee ring can be solely predicted by the initial volume fraction of particles in a suspension and the formed by the suspension on the of interest," Dr. Garnier said.

"Using this finding, we were then able to calculate a model to predict formation from contact angles using a number of liquid droplets.

"This modeling technique and its resulting insights are new powerful tools to optimize manufacturing and diagnostic techniques."

More information: Michael J. Hertaeg et al. Predicting coffee ring formation upon drying in droplets of particle suspensions, Journal of Colloid and Interface Science (2021). DOI: 10.1016/j.jcis.2021.01.092

Provided by Monash University

Citation: International team uncovers mystery behind 'coffee ring' formation (2021, March 29) retrieved 25 February 2024 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Making masks and PPE with hydrophilic surfaces, could reduce infection risk


Feedback to editors