New manufacturing technique could improve common problem in printing technology

August 16, 2018, Binghamton University
For figure A, there is particle transport to the apex of the target droplet and a dense center deposit is formed. For figure B, the final mapped deposit is more uniform. Credit: Langmuir

A new manufacturing technique developed by researchers from Binghamton University, State University at New York may be able to avoid the "coffee ring" effect that plagues inkjet printers.

The outer edges of the ring that a leaves behind are darker than the inside of the ring. That's because the solute is separated from the liquid during the evaporation process. That's what's called the .

This same effect can happen with printers as well. When printing a text document, the text itself consists of an outline of the letters and the inside of the letters. While it may not be visible to the untrained eye, the outlines are actually darker than the inside. This happens during the drying process, just like the coffee ring effect, but researchers have wanted to find a way to remove this difference in pigmentation.

Assistant Professor Xin Yong, Professor Tim Singler and Associate Professor Paul Chiarot from Binghamton University's Mechanical Engineering Department recently made a discovery that could eliminate the difference between the outline and the inside that happens during evaporation.

They published their work, titled "Interfacial Targeting of Sessile Droplets Using Electrospray," in the journal Langmuir.

The team of experimentalists and theorists worked together to study the flow inside and on the surface of drying droplets to understand more about the coffee ring effect and how to avoid it. Using a unique technique called electrospray, they applied a high voltage to a liquid to produce an aerosol to add nanoparticles to the droplets. Nanoparticles are often useful for researchers due to their small size and .

This technique allowed for a more even dispersal of ink and stopped the coffee ring effect.

"Not only does this study help us understand how to avoid the coffee ring effect, it also tells us more about the phenomena that occur during evaporation that lead to the coffee ring effect," said Yong.

In the research paper, the team said, "To our knowledge, we are among the first to use electrospray for this purpose to explore interfacial particle transport and to elucidate the role of surfactants in governing particle motion and deposit structure."

While this difference in quality may not affect the standard user's print job, it will have a substantial effect on the capabilities of additive manufacturing and biotechnology, where printing films in a uniform way is extremely important.

Explore further: Bacterium counteracts 'coffee ring effect'‬

More information: Aref Ghafouri et al, Interfacial Targeting of Sessile Droplets Using Electrospray, Langmuir (2018). DOI: 10.1021/acs.langmuir.8b01308

Related Stories

Bacterium counteracts 'coffee ring effect'‬

May 14, 2013

Ever notice how a dried coffee stain has a thicker outer rim, while the middle of the stain remains almost unsoiled? This 'coffee ring effect' also occurs in other materials. Researchers from the Departments of Chemical Engineering ...

Coffee-ring phenomenon explained in new theory

December 20, 2016

The formation of a simple coffee stain has been the subject of complex study for decades, though it turns out that there remain some stones still to be turned. Researchers at the University of Nevada, Reno have modeled how ...

Evaporated whisky inspires new type of coating technique

March 25, 2016

(Phys.org)—A team of researchers at Princeton University, along with assistance from a photographer in Arizona, has uncovered the secret behind why whisky does not leave behind "coffee rings" when in dries. In their paper ...

Physicists undo the 'coffee ring effect' (w/ video)

August 17, 2011

A team of University of Pennsylvania physicists has shown how to disrupt the "coffee ring effect" — the ring-shaped stain of particles leftover after coffee drops evaporate — by changing the particle shape. The ...

Recommended for you

Producing defectless metal crystals of unprecedented size

October 19, 2018

A research group at the Center for Multidimensional Carbon Materials, within the Institute for Basic Science (IBS), has published an article in Science describing a new method to convert inexpensive polycrystalline metal ...

Nanodiamonds as photocatalysts

October 19, 2018

Climate change is in full swing and will continue unabated as long as CO2 emissions continue. One possible solution is to return CO2 to the energy cycle: CO2 could be processed with water into methanol, a fuel that can be ...

Shining light on the separation of rare earth metals

October 18, 2018

Inside smartphones and computer displays are metals known as the rare earths. Mining and purifying these metals involves waste- and energy-intense processes. Better processes are needed. Previous work has shown that specific ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.