Stove, dome, and umbrella effects of atmospheric aerosol in planetary boundary layer

Stove, dome, and umbrella effects of atmospheric aerosol in planetary boundary layer
Fig. 1. Schematic description of aerosol-PBL interactions with absorption aerosol layer below RL, absorption aerosol layer above RL, purely scattering aerosol layer below RL, and purely scattering aerosol layer above RL. Credit: XIN Jinyuan

Atmospheric planetary boundary layer (PBL), also called the atmospheric boundary layer, is the region of the lower troposphere where Earth's surface strongly influences temperature, moisture and wind through the turbulent transfer of air mass. PBL controls the dispersion of air pollutants and is closely related with human life.

Previous studies have shown that the positive feedback of aerosol and PBL is an important factor in the haze episodes. However, the role of different types of aerosol (scattering and absorption) in the development of PBL remains unclear.

"We found the aerosol acts sometimes as a stove, a dome and even an umbrella on the PBL, depending on its optical properties and altitudes." Said Prof. Xin Jinyuan from the Institute of Atmospheric Physics (IAP) of the Chinese Academy of Sciences.

In a recently published study in Geophysical Research Letters, Prof. Xin and Prof. Scot T. Martin from Harvard University constructed the model of aerosol stove, dome, and umbrella effects using a large-eddy simulation model incorporated with the observations of a typical stagnant weather day.

PBL comprises of a bottom-up structure of a near-surface stable boundary layer (SBL), a residual layer (RL), and a capping inversion layer (CIL) during nighttime; and a convection boundary layer (CBL) and a CIL during daytime.

"We found that the increase of absorption aerosol concentration below RL strongly heated the lower atmosphere, induced the entrainment, and promoted the PBL development. We call it aerosol stove effect," said Prof. Xin.

Stove, dome, and umbrella effects of atmospheric aerosol in planetary boundary layer
Fig. 2 Schematic diagram for the application of the aerosol stove, dome, and umbrella effect during NCP hazy events. (a) Southerly transport scenario of NCP region. (b) Haze formation process interpreted by "double inhibitions." Credit: XIN Jinyuan

For the absorption aerosol layer above RL, according to the study, the increase of aerosol concentration that traps more solar radiation strongly heated the temperature inversion layer. This strengthened the inversion intensity and exhibited a strong inhibition on PBL. This is called dome effect since it acts as a lid to impede the development of PBL.

In the cases of purely scattering aerosol, the suppression of PBL depends on aerosol loading rather than the height of aerosol layer, so the aerosol is like an umbrella that reflects the back to the out space.

Results reveal that there exists a transition height, above which absorption aerosol dominates the suppression of PBL (dome effect > aloft umbrella effect) and below which the purely scattering aerosol is more important (surface umbrella effect > stove effect). This transition height is highly related to the RL height.

These findings provide scientific references for pollution control strategies. It is necessary to strictly control the burning activities which produce a large amount of absorption pollutants (e.g., and brown carbon) in the upwind area in the south of North China Plain (NCP) to avoid the dome effect.

For the local NCP, measures such as vehicle restriction and desulfurization of coal burning should be specially strengthened to reduce the emission of scattering and its gaseous precursors (e.g., and nitric oxide) in order to eliminate the surface umbrella effect.

More information: Yongjing Ma et al. The Stove, Dome, and Umbrella Effects of Atmospheric Aerosol on the Development of the Planetary Boundary Layer in Hazy Regions, Geophysical Research Letters (2020). DOI: 10.1029/2020GL087373

Journal information: Geophysical Research Letters

Citation: Stove, dome, and umbrella effects of atmospheric aerosol in planetary boundary layer (2020, July 21) retrieved 19 April 2024 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Scientists model role of aerosol-photolysis interaction in winter haze formation


Feedback to editors