Study uncovers key step in cell protein production

cell
Credit: CC0 Public Domain

Scientists at the University of Sheffield have discovered how genes create proteins in research which could aid the development of treatments for human diseases.

Proteins are the building blocks of life and our cells make them based on instructions from our DNA. These instructions that have to be transported from the , which holds the DNA, to the cytoplasm where proteins are made.

The research, led by Professor Stuart Wilson from the University of Sheffield's Department of Molecular Biology and Biotechnology, revealed how our cells know when these instructions, known as mRNA, are ready to be transported. The findings will help our understanding of some cancers and conditions such as , which are linked to faults in protein production.

The research is published today in Molecular Cell.

Professor Stuart Wilson, lead researcher from the University of Sheffield, explained: "If the mRNA is transported before the processing is complete, then it is a disaster for the cell, which can't make proteins and ultimately dies. Faults in this process are behind many human diseases. So it's vitally important, not just that the processing is done correctly, but the cell knows when this is complete."

The team, from the Sheffield Institute for Nucleic Acids, found that molecules known as 'export factors' - which help transport the mRNA—also signal to the cell when the processing is complete by moving their position on the mRNA.

Scientists have long argued over the position of export factors—whether they sit at the beginning of the mRNA or centrally, where the -making instructions have been spliced together.

Professor Wilson, working with his co-researchers Dr. Nicolas Viphakone and Dr. Ian Sudbery, found that in fact, both views are correct. The export factors initially sit at the beginning of the mRNA while the processing takes place, then once it is complete, they move further in, sitting at points where splicing has taken place, to signal that transport can begin.

"This research helps us understand a basic process that is fundamental to life, but which will enable us to develop treatments for diseases in the future," said Professor Wilson. "We can't easily fix a problem until we know what's wrong and we can't know what's wrong until we're clear as to how it's supposed to work.

"Export factors have changed very little throughout evolution, so those found in humans are very similar to those in simpler organisms such as yeast and insects. Our research was in human , but we believe that the process we've uncovered will be pretty much the same in any animal on the planet."

"Co-transcriptional loading of RNA export factors shapes the human transcriptome", by Nicolas Viphakone, Ian Sudbery, Llywelyn Griffith, Catherine G. Heath, David Sims and Stuart A Wilson, is published in Molecular Cell.


Explore further

Scientists decode TREX which could see new treatments for cancer realized

Journal information: Molecular Cell

Citation: Study uncovers key step in cell protein production (2019, May 16) retrieved 21 May 2019 from https://phys.org/news/2019-05-uncovers-key-cell-protein-production.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
73 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more