Novel experiment validates widely speculated mechanism behind the formation of stars

February 5, 2019 by John Greenwald, Princeton Plasma Physics Laboratory
Water-filled version of MRI experiment showing transparent outer cylinder and blackened inner cylinder. Red lasers enter at bottom to measure the local speed of the water. Credit: Eric Edlund and Elle Starkman

How have stars and planets developed from the clouds of dust and gas that once filled the cosmos? A novel experiment at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) has demonstrated the validity of a widespread theory known as "magnetorotational instability," or MRI, that seeks to explain the formation of heavenly bodies.

The theory holds that MRI allows , clouds of dust, gas, and plasma that swirl around growing stars and as well as black holes, to collapse into them. According to the theory, this collapse happens because turbulent swirling plasma, technically known as "Keplerian flows," gradually grows unstable within a disk. The instability causes angular —the process that keeps orbiting planets from being drawn into the sun—to decrease in inner sections of the disk, which then fall into celestial bodies.

Unlike orbiting planets, the matter in dense and crowded accretion disks may experience forces such as friction that cause the disks to lose angular momentum and be drawn into the objects they swirl around. However, such forces cannot fully explain how quickly matter must fall into larger objects for planets and stars to form on a reasonable timescale.

MRI experiment

At PPPL, physicists have simulated the hypothesized broader process in the laboratory's MRI experiment. The unique device consists of two concentric cylinders that rotate at different speeds. In this experiment, researchers filled the cylinders with water and attached a water-filled plastic ball tethered by a spring to a post in the center of the device; the stretching and bending spring mimicked the magnetic forces in the plasma in accretion disks. Researchers then rotated the cylinders and videoed the behavior of the ball as seen from the top down.

Simulated accretion disk swirling around a celestial body. Credit: Michael Owen and John Blondin, North Carolina State University.

The findings, reported in Communications Physics, compared the motions of the spring-tethered ball when rotating at different speeds. "With no stretching, nothing happens to the angular momentum," said Hantao Ji, a professor of astrophysical sciences at Princeton University and principal researcher on the MRI and a coauthor of the paper. "Nothing also happens if the spring is too strong."

However, direct measurement of the results found that when the spring-tethering was weak—analogous to the condition of the magnetic fields in accretion disks —behavior of the angular momentum of the ball was consistent with MRI predictions of developments in a real accretion disk. The findings showed that the weakly tethered rotating ball gained angular momentum and shifted outward during the experiment. Since the of a rotating body must be conserved, any gains in momentum must be matched by a loss of momentum in the inner section, allowing gravity to draw the disk into the object it has been orbiting.

Explore further: Laboratory experiments probe the formation of stars and planets

More information: Derek M. H. Hung et al, Experimental confirmation of the standard magnetorotational instability mechanism with a spring-mass analogue, Communications Physics (2019). DOI: 10.1038/s42005-018-0103-7

Related Stories

Researchers Test the Physics of Star Formation in the Lab

November 16, 2006

The formation of stars and planets remains one of the big questions in astrophysical science. Currently, scientists do not understand the required conditions and the accretion, or matter collection process, involved in star ...

Youngest accretion disk detected in star formation

September 5, 2018

An international team led by Chin-Fei Lee at the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA) has discovered a very small accretion disk formed around one of the youngest protostars, with the Atacama Large ...

Recommended for you

CMS gets first result using largest-ever LHC data sample

February 15, 2019

Just under three months after the final proton–proton collisions from the Large Hadron Collider (LHC)'s second run (Run 2), the CMS collaboration has submitted its first paper based on the full LHC dataset collected in ...

Gravitational waves will settle cosmic conundrum

February 14, 2019

Measurements of gravitational waves from approximately 50 binary neutron stars over the next decade will definitively resolve an intense debate about how quickly our universe is expanding, according to findings from an international ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

2.3 / 5 (3) Feb 05, 2019
Star formation is one of the least comprehended phenomenon in astrophysics. Is there a general theory of star formation? No, there is not. There is a number of models based on computer simulations which include supersonic hydrodynamics with non-ideal MHD turbulence influenced by gravity. They include the line and continuum radiative processes of the energy transfer; a number of chemical processes with dissociation, recombination and ionization, with uncertain nomenclature of atoms and molecules, unknown magnetic fields and formation and destruction of dust particles. In addition there is macrophysics that is an environment in the molecular clouds, clumps and cores; inclusion in the multiple systems, collisions among stellar systems; jets and outflows; radiation pressure.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.