Youngest accretion disk detected in star formation

September 5, 2018, Academia Sinica Institute of Astronomy and Astrophysics
Figure 1: Jet, disk, and outflow in the HH 211 protostellar system. (Top) A composite image showing the jet system. (Bottom) A zoom-in to the innermost region around the central protostar, showing the disk and outflow there. Asterisks mark the possible position of the central protostar. Gray arrows show the jet axis. Orange image shows the dusty disk at submillimeter wavelength obtained with ALMA. Blue and red images show the blueshifted and redshifted parts of the outflow coming out from the disk rotating around the jet axis. Credit: ALMA (ESO/NAOJ/NRAO)/Lee et al

An international team led by Chin-Fei Lee at the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA) has discovered a very small accretion disk formed around one of the youngest protostars, with the Atacama Large Millimeter/submillimeter Array (ALMA). This discovery poses a constraint on current theory of disk formation stronger than before, by pushing the disk formation time by a factor of a few earlier. Moreover, a compact rotating outflow has been detected. It may trace a disk wind carrying away angular momentum from the disk and thus facilitate the disk formation.

"ALMA is so powerful that it can resolve an with a radius as small as 15 astronomical units (AU)," says Chin-Fei Lee at ASIAA. "Since this disk is about a few times younger than the previously resolved youngest disk, our result has provided a stronger constraint on current theory of disk formation by pushing the disk formation time by a factor of a few earlier. Moreover, together with the previous results of the older disks, our disk result favors a model where the disk radius grows linearly with the protostellar mass, and thus supporting the 'early-start, slow-growth' scenario against the 'slow-start, rapid-growth' scenario for accretion disk formation around protostars."

HH 211 is one of the youngest protostellar systems in Perseus at a distance of about 770 light-years. The central has an age of only about 10,000 years (which is about 2 millionths of the age of our Sun) and a mass of less than 0.05 solar mass. It drives a powerful bipolar jet and thus must accrete material efficiently.

Figure 2: Size comparison between the HH 211 disk (Left) and HH 212 disk (Right, adopted from Lee et al. 2017). Note that HH 211 disk has been rotated to align with the HH 212 disk in order to facilitate the comparison. Credit: ALMA (ESO/NAOJ/NRAO)/Lee et al

Previous search at a resolution of about 50 AU only found a hint of a small dusty disk near the protostar. Now with ALMA at a resolution of 7 AU, which is about 7 times finer, the dusty disk at submillimeter wavelength not only has been detected but also spatially resolved. It is a nearly edge-on accretion disk feeding the central protostar and has a radius of about 15 AU. The disk is thick, indicating that the submillimeter light emitting grains have yet to settle to the midplane. Unlike the previously resolved older edge-on disk HH 212 which appears as a large "hamburger," this younger edge-on disk appears as a small "bun." Thus, it seems that an edge-on disk will grow from a small "bun" to a large "hamburger" in a later phase. Moreover, a compact rotating outflow has been detected, and it may trace a disk wind carrying away angular momentum from the disk and thus facilitate the disk formation.

The observations open up an exciting possibility of directly detecting and characterizing small disks around the youngest protostars through high-resolution imaging with ALMA, which provides strong constraints on theories of disk formation and thus the feeding process in star formation.

Explore further: Prebiotic atmosphere discovered on accretion disk of baby star

More information: Chin-Fei Lee et al. ALMA Observations of the Very Young Class 0 Protostellar System HH211-mms: A 30 au Dusty Disk with a Disk Wind Traced by SO?, The Astrophysical Journal (2018). DOI: 10.3847/1538-4357/aad2da

ALMA observations of the very young Class 0 protostellar system HH 211-mms: a 30-au dusty disk with a disk-wind traced by SO? arxiv.org/abs/1807.05336

Related Stories

Dusty protoplanetary disks

December 8, 2017

Planetary systems form out of disks of gas and dust around young stars. How the formation proceeds, however, is complex and poorly understood. Many physical processes are involved including accretion onto the star, photoevaporation ...

Recommended for you

Blue Origin to make 10th flight test of space tourist rocket

January 23, 2019

Blue Origin, the rocket company headed by Amazon founder Jeff Bezos, is poised to launch the 10th test flight of its unmanned New Shepard rocket on Wednesday as it competes with Virgin Galactic to become the first to carry ...

Milky Way's neighbors pick up the pace

January 22, 2019

After slowly forming stars for the first few billion years of their lives, the Magellanic Clouds, near neighbors of our own Milky Way galaxy, have upped their game and are now forming new stars at a fast clip. This new insight ...

A fleeting moment in time

January 22, 2019

The faint, ephemeral glow emanating from the planetary nebula ESO 577-24 persists for only a short time—around 10,000 years, a blink of an eye in astronomical terms. ESO's Very Large Telescope captured this shell of glowing ...

How hot are atoms in the shock wave of an exploding star?

January 21, 2019

A new method to measure the temperature of atoms during the explosive death of a star will help scientists understand the shock wave that occurs as a result of this supernova explosion. An international team of researchers, ...

New eclipsing cataclysmic variable discovered

January 21, 2019

Using the Mobile Astronomical System of Telescope-Robots (MASTER), an international team of astronomers has detected a new eclipsing cataclysmic variable. The newfound object, designated MASTER OT J061451.70–272535.5, is ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.