Researchers create a 'universal entangler' for new quantum tech

February 27, 2019, Yale University
Yale researchers create a 'universal entangler' for new quantum tech
Yale researchers have created a 'universal entangler' that can link a variety of encoded particles on demand. Credit: Yale University

One of the key concepts in quantum physics is entanglement, in which two or more quantum systems become so inextricably linked that their collective state can't be determined by observing each element individually. Now Yale researchers have developed a "universal entangler" that can link a variety of encoded particles on demand.

The discovery represents a powerful new mechanism with potential uses in , cryptography, and quantum communications. The research is led by the Yale laboratory of Robert Schoelkopf and appears in the journal Nature.

Quantum calculations are accomplished with delicate bits of data called qubits, which are prone to errors. To implement faithful quantum computation, scientists say, they need "logical" qubits whose errors can be detected and rectified using quantum error correction codes.

"We've shown a new way of creating gates between logically-encoded qubits that can eventually be error-corrected," said Schoelkopf, the Sterling Professor of Applied Physics and Physics at Yale and director of the Yale Quantum Institute. "It's a much more sophisticated operation than what has been performed previously."

The entangling mechanism is called an exponential-SWAP gate. In the study, researchers demonstrated the new technology by deterministically entangling encoded states in any chosen configurations or codes, each housed in two otherwise isolated, 3-D superconducting microwave cavities.

"This universal entangler is critical for robust quantum computation," said Yvonne Gao, co-first author of the study. "Scientists have invented a wealth of hardware-efficient, quantum error correction codes—each one cleverly designed with unique characteristics that can be exploited for different applications. However, each of them requires wiring up a new set of tailored operations, introducing a significant hardware overhead and reduced versatility."

The universal entangler mitigates this limitation by providing a gate between any desired input states. "We can now choose any desired codes or even change them on the fly without having to re-wire the operation," said co-first author Brian Lester.

The discovery is just the latest step in Yale's quantum research work. Yale scientists are at the forefront of efforts to develop the first fully useful quantum computers and have done pioneering work in computing with superconducting circuits.

Explore further: Researchers 'teleport' a quantum gate

More information: Entanglement of bosonic modes through an engineered exchange interaction, Nature (2019). DOI: 10.1038/s41586-019-0970-4 , https://www.nature.com/articles/s41586-019-0970-4

Related Stories

Researchers 'teleport' a quantum gate

September 5, 2018

Yale University researchers have demonstrated one of the key steps in building the architecture for modular quantum computers: the "teleportation" of a quantum gate between two qubits, on demand.

A faster method to read quantum memory

February 25, 2019

The potential computing revolution that quantum computers have long promised is based on their weird property called superposition. Namely, qubits can take both logical states 0 and 1 simultaneously, on top of any value in ...

At Yale, quantum computing is a (qu)bit closer to reality

February 15, 2012

(PhysOrg.com) -- Physicists at Yale University have taken another significant step in the development of quantum computing, a new frontier in computing that promises exponentially faster information processing than the most ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.