New device lengthens the life of quantum information

July 20, 2016, Yale University
A representation of the quantum state in the new Yale device. Crucial to its success, the researchers say, is the ability to successfully detect and sort errors. Credit: Yale University

Yale University scientists have reached a milestone in their efforts to extend the durability and dependability of quantum information.

For the first time, researchers at Yale have crossed the "break even" point in preserving a bit of for longer than the lifetime of its constituent parts. They have created a novel system to encode, spot errors, decode, and correct errors in a quantum bit, also known as a "qubit." The development of such a robust method of Quantum Error Correction (QEC) has been one of the biggest remaining hurdles in quantum computation.

The findings were published online July 20 in the journal Nature.

"This is the first to actually detect and correct naturally occurring errors," said Robert Schoelkopf, Sterling Professor of Applied Physics and Physics at Yale, director of the Yale Quantum Institute, and principal investigator of the study. "It is just the beginning of using QEC for real computing. Now we need to combine QEC with actual computations."

Error correction for quantum data bits is exceptionally difficult because of the nature of the quantum state. Unlike the "classical" state of either zero or one, the quantum state can be a zero, a one, or a superposition of both zero and one. Furthermore, the quantum state is so fragile that the act of observing it will cause a qubit to revert back to a classical state.

Co-lead author Andrei Petrenko, who is a Yale graduate student, added: "In our experiment we show that we can protect an actual superposition and the QEC doesn't learn whether the qubit is a zero or a one, but can still compensate for the errors."

The team accomplished it, in part, by finding a less complicated way to encode and correct the information. The Yale researchers devised a microwave cavity in which they created an even number of photons in a that stores the qubit. Rather than disturbing the photons by measuring them—or even counting them—the researchers simply determined whether there were an odd or even number of photons. The process relied on a kind of symmetry, via a technique the team developed previously.

"If a photon is lost, there will now be an odd number," said co-lead author Nissim Ofek, a Yale postdoctoral associate. "We can measure the parity, and thus detect error events without perturbing or learning what the encoded quantum bit's value actually is."

The cavity developed by Yale is able to prolong the life of a more than three times longer than typical superconducting qubits today. It builds upon more than a decade of development in circuit QED architecture.

Schoelkopf and his frequent Yale collaborators, Michel Devoret and Steve Girvin, have made a series of quantum superconducting breakthroughs in recent years, directed at creating electronic devices that are the quantum version of the integrated circuit. Devoret, Yale's F.W. Beinecke Professor of Physics, and Girvin, Yale's Eugene Higgins Professor of Physics and Applied Physics, are co-authors of the Nature paper.

Explore further: Doubling down on Schrödinger's cat

More information: Extending the lifetime of a quantum bit with error correction in superconducting circuits, Nature, nature.com/articles/doi:10.1038/nature18949

Related Stories

Doubling down on Schrödinger's cat

May 26, 2016

Yale physicists have given Schrödinger's famous cat a second box to play in, and the result may help further the quest for reliable quantum computing.

Scientists track quantum errors in real time

July 14, 2014

(Phys.org) —Scientists at Yale University have demonstrated the ability to track real quantum errors as they occur, a major step in the development of reliable quantum computers. They report their results in the journal ...

At Yale, quantum computing is a (qu)bit closer to reality

February 15, 2012

(PhysOrg.com) -- Physicists at Yale University have taken another significant step in the development of quantum computing, a new frontier in computing that promises exponentially faster information processing than the most ...

New qubit control bodes well for future of quantum computing

January 14, 2013

(Phys.org)—Yale University scientists have found a way to observe quantum information while preserving its integrity, an achievement that offers researchers greater control in the volatile realm of quantum mechanics and ...

Three tiny qubits, another big step toward quantum computing

September 29, 2010

(PhysOrg.com) -- The rules that govern the world of the very small, quantum mechanics, are known for being bizarre. One of the strangest tenets is something called quantum entanglement, in which two or more objects (such ...

Recommended for you

Engineers invent groundbreaking spin-based memory device

December 7, 2018

A team of international researchers led by engineers from the National University of Singapore (NUS) have invented a new magnetic device to manipulate digital information 20 times more efficiently and with 10 times more stability ...

Multichannel vectorial holographic display and encryption

December 7, 2018

Holography is a powerful tool that can reconstruct wavefronts of light and combine the fundamental wave properties of amplitude, phase, polarization, wave vector and frequency. Smart multiplexing techniques (multiple signal ...

A new 'spin' on kagome lattices

December 7, 2018

Like so many targets of scientific inquiry, the class of material referred to as the kagome magnet has proven to be a source of both frustration and amazement. Further revealing the quantum properties of the kagome magnet ...

How ice particles promote the formation of radicals

December 7, 2018

The production of chlorofluorocarbons, which damage the ozone layer, has been banned as far as possible. However, other substances can also tear holes in the ozone layer in combination with ice particles, such as those found ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.