Scientists measure exact edge between superconducting and magnetic states

February 28, 2019, Ames Laboratory
Scientists measure exact edge between superconducting and magnetic states
Credit: Ames Laboratory

Scientists at the U.S. Department of Energy's Ames Laboratory have developed a method to accurately measure the "exact edge" or onset at which a magnetic field enters a superconducting material. The knowledge of this threshold— called the lower critical field— plays a crucial role in untangling the difficulties that have prevented the broader use of superconductivity in new technologies.

In condensed matter physics, scientists distinguish between various superconducting states. When placed in a magnetic , the upper critical field is the strength at which it completely destroys superconducting behavior in a material. The Meissner effect can be thought of as its opposite, which happens when a material transitions into a superconducting state, completely expelling a magnetic field from its interior, so that it is reduced to zero at a small (typically less than a micrometer) characteristic length called the London penetration depth.

But what happens in the gray area between the two? Practically all are classified as type II, meaning that at larger magnetic fields, they do not show a complete Meissner effect. Instead, they develop a mixed state, with quantized —called Abrikosov vortices— threading the material, forming a two-dimensional vortex lattice, and significantly affecting the behavior of superconductors. Most importantly, these vortices can be pushed around by flowing electrical current, causing superconductivity to dissipate.

The point when these vortices first begin to penetrate a superconductor is called the lower critical field, one that's been notoriously difficult to measure due to a distortion of the magnetic field near sample edges. However, knowledge of this field is needed for better understanding and controlling superconductors for use in applications.

"The boundary line, the temperature-dependent value of the at which this happens, is very important; the presence of Abrikosov vortices changes the behavior of the superconductor a great deal," said Ruslan Prozorov, an Ames Laboratory physicist who is an expert in superconductivity and magnetism. "Many of the applications for which we'd like to use , like the transmission of electricity, are hindered by the existence of this vortex phase."

To validate the novel technique developed to measure this boundary line, Prozorov and his team probed three already well-studied superconducting . They used a recently developed optical magnetometer that takes advantage of the quantum state of a particular kind of an atomic defect, called nitrogen-vacancy (NV) centers, in diamond. The highly sensitive instrument allowed the scientists to measure very small deviations in the magnetic signal very close to the sample edge detecting the onset of vortices penetration.

"Our method is non-invasive, very precise and has better than previously used methods," said Prozorov.

In addition, theoretical calculations conducted together with another Ames Laboratory scientist, Vladimir Kogan, allowed extraction of the lower critical field values from the measured onset of vortex penetration.

Explore further: Revealing the mysteries of superconductors: Team's new scope takes a closer look

More information: K.R. Joshi et al. Measuring the Lower Critical Field of Superconductors Using Nitrogen-Vacancy Centers in Diamond Optical Magnetometry, Physical Review Applied (2019). DOI: 10.1103/PhysRevApplied.11.014035

Related Stories

Pushing the extra cold frontiers of superconducting science

October 18, 2018

Measuring the properties of superconducting materials in magnetic fields at close to absolute zero temperatures is difficult, but necessary to understand their quantum properties. How cold? Lower than 0.05 Kelvin (-272°C).

Superconductivity and ferromagnetism fight an even match

October 12, 2018

Russian physicists from MIPT teamed up with foreign colleagues for a groundbreaking experimental study of a material that possesses both superconducting and ferromagnetic properties. In their paper published in Science Advances, ...

Physicists manipulate Abrikosov vortices

November 28, 2016

A nanophotonics group led by Prof. Brahim Lounis of the University of Bordeaux, including scientists from MIPT, has performed a unique experiment involving the optical manipulation of individual Abrikosov vortices in a superconductor. ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.