Building a better fuel cell begins with surface chemistry

February 12, 2019, Environmental Molecular Sciences Laboratory
Building a better fuel cell begins with surface chemistry
Scientists peered deep into the inner workings of a fuel cell for a more complete picture of the catalytic process. This work has promise to improve designs for more efficient cells. Credit: Nathan Johnson, PNNL Creative Services

Fuel cells powered by electrocatalytic reactions have the potential to eliminate pollution caused by burning fossil fuels, if they could be made more efficient. Key to higher efficiency are the chemical reactions at the surfaces of the materials involved. An international team of scientists peered deep into the molecular reactions of ethanol on gold surfaces in alkaline environments typically seen in model fuel cells.

Fuel cells convert into clean electrical energy through a series of reactions. Changes in surface chemistry during these reactions may influence both the catalytic efficiency and the reactions themselves. By providing fundamental insight into , this work is giving scientists a more complete picture of the catalytic process and will help them design better fuel cells that can be used to power a single device such as your laptop computer or a local electric grid.

Scientists from the Chinese Academy of Sciences, China's National Centre for Mass Spectrometry, and EMSL, the Environmental Molecular Sciences Laboratory, a U.S. Department of Energy Office of Science user facility, designed and fabricated a high-powered way to visualize the transformation of thin gold surfaces inside a direct alcohol . This work made use of EMSL's time-of-flight secondary ion mass spectrometer, and allowed the team to peer into the molecular functioning of the catalytic reactions. This work provided direct molecular evidence of the changes gold undergoes in these reactions. The scientists also identified additional active sites—places on the surface where the needed conversion can take place. These and other insights will provide useful information to optimize fuel cell efficiency.

Explore further: Newly discovered design rules lead to better fuel cell catalyst

More information: Yanyan Zhang et al. Potential-Dynamic Surface Chemistry Controls the Electrocatalytic Processes of Ethanol Oxidation on Gold Surfaces, ACS Energy Letters (2018). DOI: 10.1021/acsenergylett.8b02019

Related Stories

Exploring catalytic reactions at the nanoscale

September 21, 2015

The National Physical Laboratory (NPL) has used a novel imaging capability - tip-enhanced Raman spectroscopy - to map catalytic reactions at the nanoscale for the first time.

Understanding nanocatalysts' 'talk' could better inform design

March 27, 2018

Enzymes are nature's best nanoscale catalysts, and often show what's known as catalytic allostery – that is, reactions at one site affecting reactions at another site, typically a few nanometers away, without direct interaction ...

Recommended for you

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.

The friendly extortioner takes it all

February 15, 2019

Cooperating with other people makes many things easier. However, competition is also a characteristic aspect of our society. In their struggle for contracts and positions, people have to be more successful than their competitors ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.