Researchers identify how the bacterial replicative helicase opens to start DNA replication process

February 26, 2019, CUNY Advanced Science Research Center
Researchers identify how the bacterial replicative helicase opens to start DNA replication process
Loader proteins (orange) attach to the DnaB replicative helicase (white), causing it to briefly spiral open. Opening of the helicase enables entry of one of the DNA molecule's two strands. Once activated, the helicase runs the length of the strand, separating them and initiating the replication process. Here, the helicase -- helicase loader complex is shown atop a set of cryogenic electron microscopy images used to visualize the structure. Credit: Jillian Chase and David Jeruzalmi

DNA replication is a complex process in which a helicase ring separates the DNA molecule's two entwined and encoded strands, allowing each to precisely reproduce its missing half. Until recently, however, researchers have not understood how the helicase—a donut-shaped enzyme composed of six identical proteins—is able to thread just one of the strands when they are bound together. Now, new research from scientists at The Graduate Center of The City University of New York, its Advanced Science Research Center (ASRC), and The City College of New York (CCNY) has solved the mystery.

In a paper published in today's issue of the journal eLife, researchers explain how the helicase loader (P loader) from a bacterial virus attaches to the replicative helicase causing it to spiral open and quickly reclose around one of the DNA strands. The helicase then begins running along the strand and breaking the hydrogen bounds that bind it to the second strand, allowing each to become a substrate that can replicate a complete DNA molecule.

"Going into this research, we knew there had to be a loader protein for this action to take place, but we didn't know what the process looked like," said lead investigator David Jeruzalmi, a professor of chemistry and biochemistry at The Graduate Center and CCNY.

"Through our research we were able to identify the mechanism for loading the DNA strand into the helicase, and we also learned that the loader proteins prevent any movement of the helicase at the moment it opens and closes in order to prevent any replication mistakes."

The researchers studied E. coli bacteria DNA to sort out the replication mechanism. They employed cryo electron microscopy and tomography to image the and all of its loader proteins. In addition to helping them identify a previously unknown mechanism in the DNA replication process, the research might also point to an avenue for a novel class of antibiotics that target the bacterial DNA replication machinery, said the researchers.

"Our research is a beautiful example of the powerful ability of cryo- to provide important findings that can be used to develop new therapeutic drugs," said co-investigator Amedee des Georges, professor of chemistry and biochemistry at The Graduate Center and CCNY and a member of the ASRC's Structural Biology Initiative.

Explore further: Researchers solve the structure of the Zika virus helicase

More information: eLife, DOI: 10.7554/eLife.41140.001

Related Stories

Researchers solve the structure of the Zika virus helicase

May 20, 2016

A team led by researchers from Tianjin University (P.R. China) has solved the structure of the Zika virus helicase, which is a key target for antiviral development. The research is published in Springer's journal Protein ...

Hijacking the double helix for replication

December 13, 2016

For years, scientists have puzzled over what prompts the intertwined double-helix DNA to open its two strands and then start replication. Knowing this could be the key to understanding how organisms - from healthy cells to ...

Cracking the mystery of Zika virus replication

July 26, 2016

Zika virus has now become a household word. It can cause microcephaly, a birth defect where a baby's head is smaller than usual. Additionally, it is associated with Guillain-Barré syndrome, a neurological disorder that could ...

Molecular gate that could keep cancer cells locked up

July 31, 2014

In a study published today in Genes & Development, Dr Christian Speck from the MRC Clinical Sciences Centre's DNA Replication group, in collaboration with Brookhaven National Laboratory (BNL), New York, reveal the intricate ...

Recommended for you

Physicists discover new class of pentaquarks

March 26, 2019

Tomasz Skwarnicki, professor of physics in the College of Arts and Sciences at Syracuse University, has uncovered new information about a class of particles called pentaquarks. His findings could lead to a new understanding ...

Study finds people who feed birds impact conservation

March 26, 2019

People in many parts of the world feed birds in their backyards, often due to a desire to help wildlife or to connect with nature. In the United States alone, over 57 million households in the feed backyard birds, spending ...

Matter waves and quantum splinters

March 25, 2019

Physicists in the United States, Austria and Brazil have shown that shaking ultracold Bose-Einstein condensates (BECs) can cause them to either divide into uniform segments or shatter into unpredictable splinters, depending ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.