Attosecond photoelectron spectroscopy accelerated

February 6, 2019, Ludwig Maximilian University of Munich
Making Attosecond physics faster. Credit: Thorsten Naeser

Laser physicists have succeeded in reducing the acquisition time for data required for reliable characterization of multidimensional electron motions by a factor of 1000.

It may sound paradoxical, but capturing the ultrafast motions of subatomic particles is actually very time-consuming. Experiments designed to track the dynamics of electrons often take weeks. Mapping the frantic gyrations of elementary particles entails the use of extraordinarily brief pulses, and low signal-to-noise ratios necessitate the accumulation of huge datasets over long periods.

Now Physicists based at Ludwig-Maximilians-Universitaet (LMU) in Munich involved in the MEGAS Project—a between Max Planck Institute for Quantum Optics, LMU Munich and the Fraunhofer Institutes for Applied Optics and Precision Engineering and for Laser Technology—have significantly reduced the duration of such experiments. The core element of their new technique is a novel enhancement resonator. Ultrashort, near- delivered to the cavity at a rate of 18.4 million per second are converted into extreme ultraviolet attosecond pulse trains, which are ideally suited for experiments in electron dynamics.

"The new laser source generates pulses at rates that are about 1000-fold higher than was previously feasible in this spectral range, which reduces the measurement times required by the same factor," as the leader of the project, Dr. Ioachim Pupeza, explains. "This advance is of considerable significance for research on condensed-matter systems. It also opens up new opportunities for the investigation of local electric fields in nanostructures, which are of great interest for applications in future information processing with lightwaves."

Explore further: A new home for optical solitons

More information: T. Saule et al. High-flux ultrafast extreme-ultraviolet photoemission spectroscopy at 18.4 MHz pulse repetition rate, Nature Communications (2019). DOI: 10.1038/s41467-019-08367-y

Related Stories

A new home for optical solitons

January 24, 2019

Laser physicists based at the Laboratory for Attosecond Physics run by the Max Planck Institute of Quantum Optics and the Ludwig-Maximilian University have, for the first time, generated dissipative solitons in passive, free-space ...

Brief reflections from a plasma mirror

December 5, 2018

When a dense sheet of electrons is accelerated to almost the speed of light, it acts as a reflective surface. Such a 'plasma mirror' can be used to manipulate light. Now an international team of physicists from the Max Planck ...

Attoseconds break into atomic interior

February 27, 2018

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons ...

Recommended for you

CMS gets first result using largest-ever LHC data sample

February 15, 2019

Just under three months after the final proton–proton collisions from the Large Hadron Collider (LHC)'s second run (Run 2), the CMS collaboration has submitted its first paper based on the full LHC dataset collected in ...

Gravitational waves will settle cosmic conundrum

February 14, 2019

Measurements of gravitational waves from approximately 50 binary neutron stars over the next decade will definitively resolve an intense debate about how quickly our universe is expanding, according to findings from an international ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.