Researchers pinpoint promising approach for analyzing atmospheric particles from space

February 7, 2019, Optical Society of America
Credit: CC0 Public Domain

A new analysis has revealed that advanced satellite-based instrument capabilities are needed for global monitoring of microscopic particles, or aerosols, in the stratospheric layer of the atmosphere. Aerosols in the stratosphere—located above approximately 12 kilometers—increase drastically after a volcanic eruption, leading to changes in the Earth's climate and providing a critical opportunity to test scientific models designed to predict short- and long-term climate variations.

Researchers from NASA Goddard Institute for Space Studies in New York and the National Academy of Sciences in Kyiv, Ukraine, report the new findings in The Optical Society (OSA) journal Optics Express.

When a volcano erupts, large amounts of ash and sulfuric-acid particles can blanket the entire planet, blocking much of the sunlight and temporarily causing global cooling. Scientists are now exploring whether this blanketing effect could be used to counteract global warming by injecting man-made aerosols in the stratosphere. Such geoengineering projects would also require a way to monitor the amount and size of artificial particulates in the stratosphere and the resulting climate effect.

"The global nature of natural and man-made stratospheric aerosols means that a specialized Earth-orbiting instrument is necessary to obtain comprehensive information on their properties and distribution," said Janna Dlugach, a member of the research team from the Ukraine's National Academy of Sciences. "This information is critical for testing climate models and for monitoring climate effects from potential geoengineering projects and major volcanic eruptions, which can affect the livelihood of the entire population."

Monitoring aerosols from space

Over the next decade NASA plans to carry out a specialized mission to monitor aerosols and clouds on Earth. This mission would include an instrument that measures not only the brightness of sunlight reflected by the atmosphere and Earth's surface but also the light's polarization, which carries rich information about the size, composition and amount of particles.

"The technical characteristics of this future polarimeter are currently the subject of active debate among the scientific community," said Michael Mishchenko, a member of the research team from NASA. "Our paper brings into this discussion the necessity of monitoring not just aerosols in the lower atmosphere, but also stratospheric aerosols that could become a major part of the climate system in the case of a major or the implementation of a massive geoengineering program."

Measurements of reflected sunlight by orbital instruments are usually dominated by bright water clouds, the land surface and aerosols found in the troposphere—the atmospheric layer closest to the ground. "This is not problematic when stratospheric aerosols are minimal and thus unimportant relative to tropospheric aerosols," explained Dlugach. "However, it becomes essential to separate out the light coming from stratospheric aerosols in the case of volcanic eruptions or geoengineering activities."

Separating stratospheric aerosols

In the new study, the researchers argue that any future aerosol-monitoring orbital instrument should provide measurements within a narrow spectral channel centered at 1.378 micrometers. "At this wavelength the in the troposphere can almost completely absorb the sunlight scattered by clouds, terrestrial surfaces and tropospheric aerosols," said Mishchenko. "This enables us to infer the properties of stratospheric aerosols separately from those of tropospheric aerosols."

The researchers used simulated measurements to determine the best way to measure stratospheric aerosols. They began by using a realistic model of stratospheric aerosols to calculate the theoretical brightness and polarization of sunlight that these aerosols would reflect into space. They then added measurement errors that mimic those found in actual satellite data. With the resulting information, they simulated several types of realistic measurements to determine which provides enough information to determine the amount, size and composition of stratospheric aerosols.

"We found that measuring the brightness of light alone does not allow the inference of stratospheric aerosols," said Dlugach. "Our analysis suggests that future aerosol-monitoring space mission should include an instrument that can obtain precise polarization measurements of a terrestrial scene from multiple angles at the 1.378-micrometer wavelength."

The strong water-vapor absorption channel is necessary to cancel out light coming from the lower atmosphere and surface while precise polarization measurements from multiple angles yield detailed information about stratospheric aerosols.

Next, the researchers plan to analyze more challenging observation conditions that would put additional requirements on the instrument design. They also want to determine whether combining polarimetric and lidar observations from the same orbital platform would be beneficial for certain conditions.

Explore further: Future of planet-cooling tech: Study creates roadmap for geoengineering research

More information: Michael I. Mishchenko et al, Retrieval of volcanic and man-made stratospheric aerosols from orbital polarimetric measurements, Optics Express (2019). DOI: 10.1364/OE.27.00A158

Related Stories

Image: Measuring clouds and aerosols from the space station

January 6, 2015

Clouds can be observed from the International Space Station moving across Earth's surface, as in this image of New Zealand taken by Expedition 42 Flight Engineer Samantha Cristoforetti. Other tiny solid and liquid particles ...

High-latitude volcanic eruptions have global impact

November 21, 2017

Volcanic eruptions emit sulfate aerosols via volcanic plumes, which may stay in the stratosphere for months to years, reflecting sunlight back into space, cooling the Earth's lower atmosphere or troposphere over a long time ...

NASA study untangles smoke, pollution effects on clouds

September 26, 2018

A new NASA-led study helps answer decades-old questions about the role of smoke and human-caused air pollution on clouds and rainfall. Looking specifically at deep convective clouds—tall clouds like thunderclouds, formed ...

Recommended for you

CMS gets first result using largest-ever LHC data sample

February 15, 2019

Just under three months after the final proton–proton collisions from the Large Hadron Collider (LHC)'s second run (Run 2), the CMS collaboration has submitted its first paper based on the full LHC dataset collected in ...

Gravitational waves will settle cosmic conundrum

February 14, 2019

Measurements of gravitational waves from approximately 50 binary neutron stars over the next decade will definitively resolve an intense debate about how quickly our universe is expanding, according to findings from an international ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.