New environmental sensing and monitoring system tested and evaluated

January 16, 2019 by Krista Timney, Virginia Tech
Daniel McLaughlin, left, and Matthew Fisher discuss the 1 kilometer distance for communication between the environmental sensing system’s node network and gateway. Credit: Virginia Tech

On the edge of Virginia Tech's campus, on a stretch of farmland that few students ever visit, small boxes are whirling through the season's change to winter, collecting and transmitting data that will make it easier for scientists to monitor and collect data across landscapes.

This of an environmental sensing system is one step in a project between the College of Natural Resources and Environment; Innovative Wireless Technologies, a leading wireless mesh network company headquartered in Lynchburg, Virginia; and the U.S. Department of Energy's Pacific Northwest National Laboratory. The project was funded by a Department of Energy Small Business Innovation Research grant intended to refine, develop, and advance new technologies.

"The call for this grant was focused on below-ground and the development of new sensor networks and communication platforms," explained Daniel McLaughlin, assistant professor in the Department of Forest Resources and Environmental Conservation and Virginia Tech's lead investigator on the project. "The primary goal is to advance the ways in which we can monitor the fate and transport of certain environmental constituents and contaminants."

The integrated environmental quality sensing system, called Envōk, is a user-deployed network composed of wireless microprocessing nodes that are capable of connecting to a wide range of environmental sensors. A grid of these nodes communicates through a wireless gateway to a server that allows operators to control the sensors remotely.

The testing of this system is taking part along Stroubles Creek on land dedicated to the Department of Biological Systems Engineering's StREAM Lab. In addition to McLaughlin, Associate Professor Kevin McGuire and Associate Professor Brian Strahm, both of the Department of Forest Resources and Environmental Conservation, and Assistant Professor Ryan Stewart of the College of Agriculture and Life Sciences' School of Plant and Environmental Sciences are participating in the project.

Matthew Fisher, the principal investigator for Innovative Wireless Technologies, described the site as an ideal location to test the system's capacities. "We have a first version of our finished product, and we wanted to evaluate that product in a field simulation," he said. "Virginia Tech is providing that evaluation. They are taking the system and, with support from us, they are going to evaluate it and see if it meets the criteria that we set for the project."

For Virginia Tech researchers, the testing and evaluation of the Envōk system has run the gamut from small software preferences to broad considerations of sensing capacities and monitoring structures.

"We're assessing and tailoring the system to meet user needs, ranging from software design and installation options to what kind of outputs and sensors are most useful in field applications," McLaughlin said. "We've looked into what kind of triggers and communication abilities should exist and what kind of memory and battery configuration the system should have."

A crucial component to the system, beyond ease of installation and the accuracy and reliability of data monitoring, is allowing users to incorporate a wide range of sensors in one system. "There are a lot of sensors available now, and what's lagging behind is an easily deployable that would allow a team to use sensors from any vendor and for a wide range of parameters," McLaughlin explained.

A further goal of the project is to design a system that allows users to "speak" to the monitoring network using mobile devices or personal computers and alter the data collected by sensors as conditions vary.

"We're focusing on user-to-network communication but also communication among nodes, where measurements at one node location can trigger specified measurement protocols at distant nodes," McLaughlin said. "Let's say that one measurement location is in a stream, and some pre-defined condition like a rising water level is triggered. We'd like that node to have the capacity to tell nodes further along in the network to, for example, start recording data at a faster rate."

On the Stroubles Creek site, will measure water levels, soil dynamics, carbon fluxes, and stream conditions over the next three months. Virginia Tech researchers will be testing the hardware and durability of the system, the communication capabilities between nodes and to the server, and real-time adjustments to sensor measurements that would allow for adaptive modeling and data analysis.

The next phase of the project, set to launch in spring 2019, will be a larger field test along the Columbia River in Washington state, where the Pacific Northwest National Laboratory will take the lead in verifying the Envōk product as it moves toward commercialization.

"We'll be deploying a fully functioning system on the Hanford Site, a former nuclear production facility along the river, with five times the number of nodes and additional sensor technologies," Fisher said. "That will be the production evaluation period, the final test of the system before we begin production."

The project has the potential to make the collection and processing of field data more dynamic and easier for scientists.

"This project is not just about what we can measure but rather developing new ways to make and communicate those measurements," McLaughlin said. "Our goal is an easily deployable sensor network that is flexible and with communication capabilities for real-time measurements across parameters and over large study areas."

Explore further: Mathematicians suggest exchanging wireless energy for data collected by sensors in mobile devices

Related Stories

Wireless sensor network monitors microclimate in the forest

May 11, 2011

During a forest monitoring operation, forestry scientists measure various environmental values. This is how they obtain indications about how the forests are changing and what can be done to preserve them. However, installing ...

Scientists develop low-cost flood sensing system

August 30, 2018

As occupants of the lowest lying state in the nation, residents of Delaware face the danger of roadway flooding regularly. Consequentially state agencies like the Delaware Department of Transportation (DelDOT) have made it ...

Wireless sensors learn from life

August 25, 2008

(PhysOrg.com) -- European and Indian researchers are applying principles learned from living organisms to design self-organising networks of wireless sensors suitable for a wide range of environmental monitoring purposes.

Underwater sensor successfully tested

June 5, 2013

As part of the Dutch STW SeaSTAR project researchers at the University of Twente have conducted tests using underwater communication and location finding at the Rutbeek water recreation park near Enschede. The aim of the ...

Recommended for you

Multiple stellar populations detected in the cluster Hodge 6

February 18, 2019

Using ESO's Very Large Telescope (VLT), astronomers have found that the cluster Hodge 6 hosts multiple stellar populations. The detection could provide important hints on the formation and evolution of Hodge 6 and star clusters ...

Predicting sequence from structure

February 18, 2019

One way to probe intricate biological systems is to block their components from interacting and see what happens. This method allows researchers to better understand cellular processes and functions, augmenting everyday laboratory ...

Energetic particles can bombard exoplanets

February 18, 2019

TRAPPIST-1 is a system of seven Earth-sized worlds orbiting an ultra-cool dwarf star about 120 light-years away. The star, and hence its system of planets, is thought to be between five-to-ten billion years old, up to twice ...

Meteorite source in asteroid belt not a single debris field

February 17, 2019

A new study published online in Meteoritics and Planetary Science finds that our most common meteorites, those known as L chondrites, come from at least two different debris fields in the asteroid belt. The belt contains ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.