Researchers examine competing states in high-temperature superconductors

December 6, 2018, Karlsruhe Institute of Technology
To apply controlled pressure to their microscopic superconducting sample (graphics), researchers use sensitive brackets with actuators based on the piezoelectric effect. Credit: KIT

High-temperature superconductors can transport electrical energy without resistance. Researchers at Karlsruhe Institute of Technology (KIT) have carried out high-resolution inelastic X-ray scattering and have found that high uniaxial pressure induces a long-range charge order competing with superconductivity. Their study opens up new insights into the behavior of correlated electrons. The study is published in Science.

Superconductors transport current without losses, but only below a certain . Conventional superconductors need to be cooled down almost to absolute zero, and even the so-called require temperatures of around -200 degrees Celsius to transport current without resistance. Despite this, superconductors are already in widespread use. To develop superconductors that work at even higher temperatures—possibly up to —and therefore significantly contribute to an efficient energy supply, and processes involved in the formation of the superconducting condensate need to be understood at a fundamental level.

Researchers led by Professor Matthieu Le Tacon, director of the Institute of Solid-State Physics (IFP) at KIT, have now made a significant step forward. They have shown that high uniaxial pressure can be used to tune the competing states in a high-temperature superconductor. Using high-resolution inelastic X-ray scattering, the scientists examined a high-temperature cuprate superconductor, YBa2Cu3O6.67. In this complex compound, copper and oxygen atoms form two-dimensional structures. Changing the charge carrier concentration in these planes yields a variety of electronic phases including superconductivity and charge orders.

In the charge ordered state, the electrons 'crystallize' into stripe-shaped nanostructures. This electronic state is usually observed in these materials when superconductivity is suppressed using very large magnetic fields, making it hard to investigate using conventional spectroscopic tools.

Inducing this state in YBa2Cu3O6.67 using uniaxial pressure instead of magnetic fields allowed the researchers to study its relationship to superconductivity using X-ray scattering. They identified strong anomalies of the lattice excitation connected to the formation of the charge order. "Our results provide new insights into the behavior of electrons in correlated electron materials and into the mechanisms yielding to high-temperature superconductivity," says Professor Matthieu Le Tacon from KIT. "They also show that uniaxial pressure has the potential to control the order of the electrons in such materials."

Explore further: Surprising similarity between stripy black holes and high-temperature superconductors

More information: H.-H. Kim et al, Uniaxial pressure control of competing orders in a high-temperature superconductor, Science (2018). DOI: 10.1126/science.aat4708

Related Stories

Superconducting secrets solved after 30 years

June 17, 2014

( —A breakthrough has been made in identifying the origin of superconductivity in high-temperature superconductors, which has puzzled researchers for the past three decades.

Recommended for you

CMS gets first result using largest-ever LHC data sample

February 15, 2019

Just under three months after the final proton–proton collisions from the Large Hadron Collider (LHC)'s second run (Run 2), the CMS collaboration has submitted its first paper based on the full LHC dataset collected in ...

Gravitational waves will settle cosmic conundrum

February 14, 2019

Measurements of gravitational waves from approximately 50 binary neutron stars over the next decade will definitively resolve an intense debate about how quickly our universe is expanding, according to findings from an international ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.