Structure and function of photosynthesis protein explained in detail

December 21, 2018, Ruhr-Universitaet-Bochum
Jacqueline Thiemann and Marc Nowaczyk are interested in protein complexes in cyanobacteria, which they keep in large tanks at RUB. Credit: RUB, Marquard

An international team of researchers has solved the structure and elucidated the function of photosynthetic complex I. This membrane protein complex plays a major role in dynamically rewiring photosynthesis. The team from the Max Planck Institute for Biochemistry, Osaka University and Ruhr-Universität Bochum together with their collaboration partners report the work in the journal Science, published online on 20 December 2018.

"The results close one of the last major gaps in our understanding of electron pathways," says Associate Professor Dr. Marc Nowaczyk, who heads the Bochum project group "Cyanobacterial Membrane Protein Complexes."

Biology's electrical circuits

Complex I is found in most living organisms. In plant cells it is used in two places: one is in mitochondria, the cell's power plants, the other is in chloroplasts, where photosynthesis occurs. In both instances, it forms part of an chain, which can be thought of as biology's electrical circuit. These are used to drive the cells responsible for energy production and storage. The and function of mitochondrial complex I as part of cellular respiration has been well investigated, whereas photosynthetic complex I has been little studied so far.

Short-circuiting photosynthesis

Using cryoelectron microscopy, the researchers were able to solve for the first time the molecular structure of photosynthetic complex I. They showed that it differs considerably from its respiratory relative. In particular, the part responsible for electron transport has a different structure, since it is optimised for cyclic electron transport in photosynthesis.

Cyclic electron transport represents a molecular short circuit in which electrons are reinjected into the photosynthetic electron transport chain instead of being stored. Marc Nowaczyk explains: "The molecular details of this process have been unknown and additional factors have not yet been unequivocally identified." The simulated the process in a test tube and showed that the protein ferredoxin plays a major role. Using spectroscopic methods, the scientists also demonstrated that the electron transport between ferredoxin and complex I is highly efficient.

Molecular fishing rod

In the next step, the group analysed at the molecular level which structural elements are responsible for the efficient interaction of complex I and ferredoxin. Further spectroscopic measurements showed that complex I has a particularly flexible part in its structure, which captures the protein ferredoxin like a fishing rod. This allows ferredoxin to reach the optimal binding position for electron transfer.

"This enabled us to bring the structure together with the function of the photosynthetic complex I and gain a detailed insight into the molecular basis of electron transport processes," summarises Marc Nowaczyk. "In the future, we plan to use this knowledge to create artificial electron transport chains that will enable new applications in the field of synthetic biology."

Explore further: Photosynthetic protein structure that harvests and traps infrared light

More information: Jan M. Schuller et al. Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer, Science (2018). DOI: 10.1126/science.aau3613

Related Stories

Photosynthesis involves a protein "piston"

May 17, 2018

Plants convert water and carbon dioxide into sugars and oxygen by photosynthesis. Photosynthesis is thus integral to life as we know it and has been investigated extensively by researchers around the globe.

Photosynthesis: The last link in the chain

January 4, 2013

For almost 30 years, researchers have sought to identify a particular enzyme that is involved in regulating electron transport during photosynthesis. A team at Ludwig-Maximilians-Universität (LMU) in Munich has now found ...

How do plants rest photosynthetic activity at night?

August 17, 2018

Photosynthesis, the process by which plants generate food, is a powerful piece of molecular machinery that needs sunlight to run. The proteins involved in photosynthesis need to be 'on' when they have the sunlight they need ...

Recommended for you

Matter waves and quantum splinters

March 25, 2019

Physicists in the United States, Austria and Brazil have shown that shaking ultracold Bose-Einstein condensates (BECs) can cause them to either divide into uniform segments or shatter into unpredictable splinters, depending ...

How tree diversity regulates invading forest pests

March 25, 2019

A national-scale study of U.S. forests found strong relationships between the diversity of native tree species and the number of nonnative pests that pose economic and ecological threats to the nation's forests.

Study suggests trees are crucial to the future of our cities

March 25, 2019

The shade of a single tree can provide welcome relief from the hot summer sun. But when that single tree is part of a small forest, it creates a profound cooling effect. According to a study published today in the Proceedings ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.