Photosynthetic protein structure that harvests and traps infrared light

Credit: CC0 Public Domain

Scientists from the University of Sheffield have solved the structure of a photosynthetic protein to reveal how it converts near-infrared light into an electrical charge.

The new study gives a pioneering insight into the efficiency and limits of the life-giving process, photosynthesis.

Plants and algae use chlorophyll to absorb energy from the Sun to power photosynthesis at wavelengths up to 720 nm - which is in the red part of the spectrum, at the limit of visibility to the human eye. However, some bacteria can push the boundaries of the energy used to wavelengths well in the near-infrared region.

The pioneering research was performed on a photosynthetic LH1-RC complex from the bacterium Blastochloris viridis, which can harvest and use light at wavelengths over 1,000 nm.

The structure of this complex, determined using , shows how it converts into an in order to power cell metabolism, which enables this bacterium to live at the extreme red limit of photosynthesis on Earth.

Professor Neil Hunter from the University of Sheffield's Department of Molecular Biology and Biotechnology and lead author of the study, said: "Photosynthesis is the major source of energy for all life on Earth, so it is important to learn the limits of this process so we can understand how to increase spectral coverage and to improve the efficiency of ."

The study, published today (Wednesday 4 April 2018) in the journal Nature, is the first to use cryo-electron microscopy to determine the structure of a photosynthetic complex at this level of detail, and the first to obtain the structure of a complex that uses light at such extreme red wavelengths.

The research was conducted in collaboration with the Electron Bio-Imaging Centre, Diamond Source and the Astbury Centre for Structural Molecular Biology at the University of Leeds.

Researchers now aim to establish the most important factors that determine the function of this complex, in terms of the proteins and pigments involved.

More information: Pu Qian et al, Cryo-EM structure of the Blastochloris viridis LH1–RC complex at 2.9 Å, Nature (2018). DOI: 10.1038/s41586-018-0014-5

Journal information: Nature

Citation: Photosynthetic protein structure that harvests and traps infrared light (2018, April 4) retrieved 24 April 2024 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

It's givin' me excitations: Study uncovers first steps of photosynthesis


Feedback to editors