Photosynthetic protein structure that harvests and traps infrared light

April 4, 2018, University of Sheffield
Credit: CC0 Public Domain

Scientists from the University of Sheffield have solved the structure of a photosynthetic protein to reveal how it converts near-infrared light into an electrical charge.

The new study gives a pioneering insight into the efficiency and limits of the life-giving process, photosynthesis.

Plants and algae use chlorophyll to absorb energy from the Sun to power photosynthesis at wavelengths up to 720 nm - which is in the red part of the spectrum, at the limit of visibility to the human eye. However, some bacteria can push the boundaries of the energy used to wavelengths well in the near-infrared region.

The pioneering research was performed on a photosynthetic LH1-RC complex from the bacterium Blastochloris viridis, which can harvest and use light at wavelengths over 1,000 nm.

The structure of this complex, determined using , shows how it converts into an in order to power cell metabolism, which enables this bacterium to live at the extreme red limit of photosynthesis on Earth.

Professor Neil Hunter from the University of Sheffield's Department of Molecular Biology and Biotechnology and lead author of the study, said: "Photosynthesis is the major source of energy for all life on Earth, so it is important to learn the limits of this process so we can understand how to increase spectral coverage and to improve the efficiency of ."

The study, published today (Wednesday 4 April 2018) in the journal Nature, is the first to use cryo-electron microscopy to determine the structure of a photosynthetic complex at this level of detail, and the first to obtain the structure of a complex that uses light at such extreme red wavelengths.

The research was conducted in collaboration with the Electron Bio-Imaging Centre, Diamond Source and the Astbury Centre for Structural Molecular Biology at the University of Leeds.

Researchers now aim to establish the most important factors that determine the function of this complex, in terms of the proteins and pigments involved.

Explore further: It's givin' me excitations: Study uncovers first steps of photosynthesis

More information: Pu Qian et al, Cryo-EM structure of the Blastochloris viridis LH1–RC complex at 2.9 Å, Nature (2018). DOI: 10.1038/s41586-018-0014-5

Related Stories

Unpacking a secret of photosynthesis

March 27, 2018

Researchers at University of Stavanger have brought us one step closer to solving the fundamental question how plants build the photosynthetic machinery.

Recommended for you

Scientists examine variations in a cell's protein factory

September 19, 2018

You can think of a cell in your body like a miniature factory, creating a final product called proteins, which carry out various tasks and functions. In this cellular factory, genes control the series of sequential steps ...

Scientists crack genetic code of cane toad

September 19, 2018

A group of scientists from UNSW Sydney, the University of Sydney, Deakin University, Portugal and Brazil have unlocked the DNA of the cane toad, a poisonous amphibian that is a threat to many native Australian species. The ...

Why some animals still have a penis bone

September 19, 2018

A team of researchers affiliated with several institutions in the U.K. has found a possible explanation for why some animals still have a penis bone—"prolonged intromission." In their paper published in Proceedings of the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.