Deep learning for electron microscopy

December 28, 2018, US Department of Energy
The same image shown using different analysis methods. a) Raw electron microscopy image. b) Defects (white) as labelled by a human expert. c) Defects (white) as labelled by a Fourier transform method. d) Defects (white) as labelled by the optimal neural network. Defects that don’t exist are shown in purple, and defects that weren’t identified are orange. In mere hours, researchers created a neural network that performed as well as a human expert, demonstrating MENNDL’s ability to significantly reduce the time to analyze electron microscopy images. Credit: US Department of Energy

Finding defects in electron microscopy images takes months. Now, there's a faster way. It's called MENNDL, the Multinode Evolutionary Neural Networks for Deep Learning. It creates artificial neural networks—computational systems that loosely mimic the human brain—that tease defects out of dynamic data. It runs on all available nodes of the Summit supercomputer, performing 152 thousand million million calculations a second.

In mere hours, scientists using MENNDL created a that performed as well as a human expert. It reduces the time to analyze electron microscopy images by months. MENNDL is the first known approach to automatically identify atomic-level structural information in scanning transmission electron microscopy data. In 2018, MENNDL received an R&D 100 award, considered the Oscars of innovation. It's also a finalist for the Gordon Bell award.

MENNDL, an artificial intelligence system, automatically designed an optimal network to extract structural information from raw atomic-resolution microscopy data. To design the network, MENNDL used 18,000 GPUs on all of the available 3000 nodes of the Summit supercomputer. In a few hours, MENNDL creates and evaluates millions of networks using a scalable, parallel, asynchronous genetic algorithm augmented with a support vector machine to automatically find a superior deep learning network topology and hyper-parameter set. This work is far faster than could be done by a human expert. For the application of electron microscopy, the system furthers the goal of better understanding the electron-beam-matter interactions and real-time image-based feedback, which enables a huge step beyond human capacity toward nanofabricating materials automatically.

Explore further: Researchers use Titan to accelerate design, training of deep learning networks

More information: 167-PFlops deep learning for electron microscopy: From learning physics to atomic manipulation. SC'18: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Dallas, TX (2018).

Related Stories

Team breaks exaop barrier with deep learning application

October 9, 2018

A team of computational scientists from Lawrence Berkeley National Laboratory (Berkeley Lab) and Oak Ridge National Laboratory (ORNL) and engineers from NVIDIA has, for the first time, demonstrated an exascale-class deep ...

Predicting the accuracy of a neural network prior to training

December 14, 2018

Constructing a neural network model for each new dataset is the ultimate nightmare for every data scientist. What if you could forecast the accuracy of the neural network earlier thanks to accumulated experience and approximation? ...

Recommended for you

Privacy becomes a selling point at tech show

January 7, 2019

Apple is not among the exhibitors at the 2019 Consumer Electronics Show, but that didn't prevent the iPhone maker from sending a message to attendees on a large billboard.

China's Huawei unveils chip for global big data market

January 7, 2019

Huawei Technologies Ltd. showed off a new processor chip for data centers and cloud computing Monday, expanding into new and growing markets despite Western warnings the company might be a security risk.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.