Chemical engineers develop new theory to build improved nanomaterials

December 11, 2018, University of Pittsburgh
ACS cover image featuring the ligand-protected metal nanoclusters. Credit: Reprinted with permission from ACS Journal of Physical Chemistry Letters. Copyright 2018 American Chemical Society.

Thanks in part to their distinct electronic, optical and chemical properties, nanomaterials are utilized in an array of diverse applications from chemical production to medicine and light-emitting devices. But when introducing another metal in their structure, also known as "doping," researchers are unsure which position the metal will occupy and how it will affect the overall stability of the nanocluster, thereby increasing experimental time and costs.

However, researchers from the University of Pittsburgh's Swanson School of Engineering have developed a new theory to better predict how nanoclusters will behave when a given is introduced to their structure. The study, "Thermodynamic Stability of Ligand-Protected Metal Nanoclusters" (DOI: 10.1021/acs.jpclett.8b02679) was featured on the cover of the ACS Journal of Physical Chemistry Letters. Co-authors are Giannis Mpourmpakis, the Bicentennial Alumni Faculty Fellow and Assistant Professor of Chemical and Petroleum Engineering at the Swanson School, and Ph.D. candidate and NSF Graduate Fellow Michael Taylor. Their findings connect with previous research focused on designing nanoparticles for catalytic applications.

"Engineering the size, shape and composition of nanoclusters is a way to control their inherent properties" Dr. Mpourmpakis said. "In particular, Ligand-protected Au (gold) nanoclusters are a class of nanomaterials where the precise control of their size has been achieved. Our research aimed to better predict how their bimetallic counterparts are being formed, which would allow us to more easily predict their structure without excess trial and error experimentation in the lab."

The research, completed in Dr. Mpourmpakis' Computer-Aided Nano and Energy Lab (C.A.N.E.LA.), enabled them to computationally predict the exact dopant locations and concentrations in ligand-protected Au nanoclusters. They also discovered that their recently developed theory, which explained the exact sizes of experimentally synthesized Au nanoclusters, was also applicable to bimetallic nanoclusters, which have even greater versatility.

"This computational theory can now be used to accelerate nanomaterials discovery and better guide experimental efforts," Dr. Mpourmpakis said. "What's more, by testing this on bimetallic nanoclusters we have the potential to develop materials that exhibit tailored properties. This could have a tremendous impact on nanotechnology."

Explore further: How do you build a metal nanoparticle?

More information: Michael G. Taylor et al, Rethinking Heterometal Doping in Ligand-Protected Metal Nanoclusters, The Journal of Physical Chemistry Letters (2018). DOI: 10.1021/acs.jpclett.8b02679

Related Stories

How do you build a metal nanoparticle?

July 10, 2017

Although scientists have for decades been able to synthesize nanoparticles in the lab, the process is mostly trial and error, and how the formation actually takes place is obscure. However, a study recently published in Nature ...

Custom designing silver nanoclusters

July 15, 2016

Altering a single atom in a silver nanocluster considerably changes its properties, creating an exciting opportunity to design these clusters.

Closer ties for silver clusters

December 20, 2016

Tiny clusters of silver atoms arranged with atomic level precision could become more versatile and useful due to a simpler way to hold them together.

Recommended for you

A decade on, smartphone-like software finally heads to space

March 20, 2019

Once a traditional satellite is launched into space, its physical hardware and computer software stay mostly immutable for the rest of its existence as it orbits the Earth, even as the technology it serves on the ground continues ...

Tiny 'water bears' can teach us about survival

March 20, 2019

Earth's ultimate survivors can weather extreme heat, cold, radiation and even the vacuum of space. Now the U.S. military hopes these tiny critters called tardigrades can teach us about true toughness.

Researchers find hidden proteins in bacteria

March 20, 2019

Scientists at the University of Illinois at Chicago have developed a way to identify the beginning of every gene—known as a translation start site or a start codon—in bacterial cell DNA with a single experiment and, through ...

Turn off a light, save a life, says new study

March 20, 2019

We all know that turning off lights and buying energy-efficient appliances affects our financial bottom line. Now, according to a new study by University of Wisconsin-Madison researchers, we know that saving energy also saves ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.