Ultracold quantum mix

November 27, 2018, University of Innsbruck
The Bose-Einstein condensates of Erbium and Dysprosium coexist and interact with each other. Credit: IQOQI Innsbruck

The experimental investigation of ultracold quantum matter makes it possible to study quantum mechanical phenomena that are otherwise inaccessible. A team led by the Innsbruck physicist Francesca Ferlaino has now mixed quantum gases of two strongly magnetic elements, erbium and dysprosium, and created a dipolar quantum mixture.

A few years ago, it seemed unfeasible to extend the techniques of atom manipulation and deep cooling in the ultracold regime to many-valence-electron atomic species. The reason is the increasing complexity in the atomic spectrum and the unknown scattering properties. However, a team of researchers, led by Ben Lev at Stanford University and an Austrian team directed by Francesca Ferlaino at the University of Innsbruck demonstrated degeneracy of rare-earth species. Ferlaino's group focused the on and developed a powerful, yet surprisingly simple approach to produce a Bose-Einstein condensate.

"We have shown how the complexity of atomic physics can open up new possibilities," says Ferlaino. Magnetic species are an ideal platform to create dipolar quantum matter, in which particles interact with each other via a long-range and orientation dependent interaction as little quantum magnets.

In a new paper now published in the journal Physical Review Letters, the Austrian research team makes a new leap in the field of dipolar matter. They mixed erbium and dysprosium, and for the first time, produced a dipolar quantum mixture. "We studied very carefully the atomic spectra of these two species and made plans on how to combine them and reach simultaneous quantum degeneracy," says Philipp Ilzhöfer, one of the two leading authors of the paper.

"And our scheme worked out even better than expected, allowing us to create a system in which Bose-Einstein condensates of erbium and dysprosium coexist and interact with each other," adds Arno Trautmann, the other leading author. This advance promises to open novel research frontiers in the field of dipolar quantum matter because of the long-range interaction among the two .

Explore further: First Bose-Einstein condensate of erbium produced

More information: A. Trautmann et al, Dipolar Quantum Mixtures of Erbium and Dysprosium Atoms, Physical Review Letters (2018). DOI: 10.1103/PhysRevLett.121.213601

Related Stories

First Bose-Einstein condensate of erbium produced

May 22, 2012

Francesca Ferlaino’s research team at the University of Innsbruck is the first to successfully create a condensate of the exotic element erbium. The Innsbruck experimental physicists hold the world record in attaining ...

Quantum particles form droplets

November 28, 2016

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: the atoms form a new type of quantum liquid or quantum droplet state. These so called quantum ...

Quantum chaos in ultracold gas discovered

March 12, 2014

A team of University of Innsbruck researchers discovered that even simple systems, such as neutral atoms, can possess chaotic behavior, which can be revealed using the tools of quantum mechanics. The ground-breaking research, ...

Recommended for you

Magic number colloidal clusters

December 14, 2018

Complexity in nature often results from self-assembly, and is considered particularly robust. Compact clusters of elemental particles can be shown to be of practical relevance, and are found in atomic nuclei, nanoparticles ...

Tangled magnetic fields power cosmic particle accelerators

December 13, 2018

Magnetic field lines tangled like spaghetti in a bowl might be behind the most powerful particle accelerators in the universe. That's the result of a new computational study by researchers from the Department of Energy's ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.