Researchers simplify tiny structures' construction drip by drip

November 8, 2018 by Scott Lyon, Princeton University
Shown are three lab samples in descending size. The rings were cured in a centrifuge using acceleration to control the length scale of the droplet structures, which can be used to create biomimetic devices like artificial compound eyes or ciliary carpets. Credit: Pierre-Thomas Brun

Popping the top on house paint usually draws people to look inside the can. But Princeton researchers have turned their gaze upward, to the underside of the lid, where it turns out that pattern of droplets could inspire new ways to make microscopically small structures.

The trick comes in controlling the droplets, which form under competing influences like gravity and . A new study, published Oct. 26 in the journal Nature Communications, explains how a deeper understanding of these highly dynamic, sometimes unstable forces can be harnessed to cheaply and quickly fabricate objects that normally require a more expensive and time-consuming process.

"We've done away with the molds," said Pierre-Thomas Brun, assistant professor of chemical and biological engineering at Princeton and the principal investigator for the study. "We don't need a clean room or any fancy equipment, so engineers have much more freedom in the design process."

Using a silicone common in medical devices, the team poured a thin liquid film over the surface of a plate, about the size of a compact disc, which they then flipped upside down for several minutes while the film cured. Without intervention, the liquid silicone congeals into an irregular array of droplets—much like the paint under a lid. But by etching the plate with mathematical precision, using lasers to cut the marks, the researchers "seeded" the into a lattice of perfect hexagons, each with a uniform dimension.

"Gravity wants to pull the fluid down," said Joel Marthelot, postdoctoral research associate at Princeton and lead author on the paper. "Capillary forces want the surface to deform minimally. So there is a competition between these two forces, which gives rise to the length scale of the structure."

More sophisticated versions of the experiment used a centrifuge in place of gravity, which allowed the team to vary the size of the drops with an indefinite range. Instead of plates, in this version they used plastic cylinders that look like clear hockey pucks. The excess fluid spun off and left their predictable pattern of cured drops. The technique worked down to the limit of their machinery, which produced a lattice of structures that were each around 10 microns, a fraction of the width of a human hair. The structures, which are prototypes, simulate the kinds of soft lenses that are common in smartphones.

"The faster it spins, the smaller the drops," Marthelot said, noting that they could make structures even smaller than what they had achieved so far. "We don't really know the limit of our technique. Only the limit of our centrifuge."

According to Brun, engineers usually regard the kinds of mechanical instabilities that cause this behavior as a kind of nemesis. They are the physical thresholds that determine weight loads or heat capacities. "In this case," he said, "we took advantage of something that is normally seen as bad. We tamed it and made it functional by turning it into a pathway to fabrication."

The technique can be easily expanded to large-scale manufacturing, the researchers said. As their methods evolve, they plan to create biomimetic devices, like an inflatable compound lens that mimics the eye of an insect, or soft robots that can be used in medical technologies.

"One can envision a wide range of potential future application," said Jörn Dunkel, associate professor of mathematics at the Massachusetts Institute of Technology, "from drag-reducing or superhydrophobic surfaces to micro-lenses and artificial ciliary carpets."

Explore further: Gold 'micro jewels' from the 3-D printer

More information: J. Marthelot et al. Designing soft materials with interfacial instabilities in liquid films, Nature Communications (2018). DOI: 10.1038/s41467-018-06984-7

Related Stories

Gold 'micro jewels' from the 3-D printer

October 30, 2018

Thanks to a laser technique that ejects ultra-tiny droplets of metal, it is now possible to print 3-D metal structures—not only simple 'piles' of droplets, but complex overhanging structures, as well, like a helix measuring ...

Engineers use liquid drops to make solids stiffer

December 16, 2014

(Phys.org)—Engineers at Yale University have discovered that the stiffness of liquid drops embedded in solids has something in common with Goldilocks: While large drops of liquids are softer than the solid that surrounds ...

Leidenfrost effect drops found to be self-propelled

September 12, 2018

A team of researchers at Physique et Mécanique des Milieux Hétérogènes in France has found that Leidenfrost effect drops move around on a hot pan because they are self-propelled. In their paper published in the journal ...

New surface makes oil contamination remove itself

June 17, 2016

Researchers of Aalto University have developed surfaces where oil transports itself to desired directions. Researchers' oleophobic surfaces are microtextured with radial arrays of undercut stripes. When oil drops fall on ...

Team develops innovative, ideal liquid-repellent surfaces

November 14, 2017

On liquid-repellent surfaces, liquid droplets bounce away instead of being stuck. These surfaces are important in many fields, such as water-repellent clothes and anti-fouling kitchenware. Used as drag-reduction coatings ...

Recommended for you

Apple pivot led by star-packed video service

March 25, 2019

With Hollywood stars galore, Apple unveiled its streaming video plans Monday along with news and game subscription offerings as part of an effort to shift its focus to digital content and services to break free of its reliance ...

How tree diversity regulates invading forest pests

March 25, 2019

A national-scale study of U.S. forests found strong relationships between the diversity of native tree species and the number of nonnative pests that pose economic and ecological threats to the nation's forests.

Scientists solve mystery shrouding oldest animal fossils

March 25, 2019

Scientists from The Australian National University (ANU) have discovered that 558 million-year-old Dickinsonia fossils do not reveal all of the features of the earliest known animals, which potentially had mouths and guts.

Earth's deep mantle flows dynamically

March 25, 2019

As ancient ocean floors plunge over 1,000 km into the Earth's deep interior, they cause hot rock in the lower mantle to flow much more dynamically than previously thought, finds a new UCL-led study.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.