Why a stream of plasma makes chemical reactions more efficient

November 6, 2018, American Physical Society

A whiff of plasma, when combined with a nanosized catalyst, can cause chemical reactions to proceed faster, more selectively, at lower temperatures, or at lower voltages than without plasma—and nobody really knows why.

Using computer modeling, Juliusz Kruszelnicki of the University of Michigan investigated the interactions between plasmas and metal catalysts embedded into ceramic beads in a packed bed reactor. He discovered that together, the metals, beads and gas create plasma that intensifies electric fields and locally heats the , which can then accelerate reactions.

Kruszelnicki will talk about this work at the American Physical Society 71st Annual Gaseous Electronics Conference and 60th Annual meeting of the APS Division of Plasma Physics, which will take place next week, Nov. 5-9 at the Oregon Convention Center in Portland.

These plasma reactors have tremendous potential to make valuable chemical processes more efficient and cost-effective, such as removing air pollution, converting carbon dioxide into fuels and producing ammonia for fertilizer, through "plasma chemical conversion."

"Combining thermocatalytic systems and plasmas allows new avenues to produce chemical products you otherwise might not be able to, or perhaps to do so at higher efficiency," Kruszelnicki said.

Simulations of discharges in a packed bed reactor show that embedding the beads with metal catalysts assists in plasma formation. The local plasma density increases, and heats the metal, thus making catalytic reactions more efficient. Credit: Juliusz Kruszelnicki

Kruszelnicki modeled the interactions of plasma and catalysts using advanced multiphysics codes developed in the lab of Mark J. Kushner at the University of Michigan. These include modules for phenomena such as electromagnetics, surface chemistry, fluid dynamics and chemical kinetics. He modeled a packed bed reactor, which is a tube filled with ceramic beads, with an electrical current passing through concentric electrodes. When gases move through the reactor, catalysts cause them to react in specific ways, such as combining nitrogen and hydrogen to generate ammonia.

Kruszelnicki found that when the beads are embedded with metallic catalyst particles and then electrified, field emission of electrons takes place, which enables higher densities of plasma. The plasma heats the catalyst, which can cause the chemical reaction to proceed faster and more efficiently, potentially lowering the applied power needed for the reaction.

"Through this process of localizing the electric field, electrons can be emitted from the surface of the metal particles and start a plasma, where it otherwise wouldn't occur," Kruszelnicki said.

By simulating low-temperature plasma chemistry, Kruszelnicki and other members of the Kushner lab are discovering new ways that plasma and catalysts work together to make chemical conversion more efficient than traditional conversion. Currently they are working with the National Science Foundation's Industry-University Cooperative Research Centers Program to collaborate with companies to translate this research for use in industry. They also hope that these more efficient processes will be compatible with off-the-grid applications, such as making fertilizer for subsistence farmers using solar power.

Explore further: Researchers developing renewable energy approach for producing ammonia

More information: Presentation #ET4.3, "Electric field emission and local surface heating in plasma packed bed reactors having metal catalyst-impregnated dielectric beads," by Juliusz Kruszelnicki will take place Tuesday, Nov. 6, 10:15 a.m. in Oregon Convention Center Room A107-A109. Abstract: meetings.aps.org/Meeting/GEC18/Session/ET4.3

Related Stories

Taming plasmas: Improving fusion using microwaves

November 5, 2018

We all know microwaves are good for cooking popcorn, but scientists have recently shown they can also prevent dangerous waves in plasmas and help produce clean, nearly limitless energy with fusion. Fusion takes place when ...

From climate killer to fuels and polymers

July 4, 2016

Researchers have discovered a catalyst that performs highly selective conversion of the greenhouse gas carbon dioxide into ethylene – an important source material for the chemical industry. In the journal Nature Communications, ...

How we can turn plastic waste into green energy

October 2, 2018

In the adventure classic Back to the Future, Emmett "Doc" Brown uses energy generated from rubbish to power his DeLorean time machine. But while a time machine may still be some way off, the prospect of using rubbish for ...

Recommended for you

Scientists produce 3-D chemical maps of single bacteria

November 16, 2018

Scientists at the National Synchrotron Light Source II (NSLS-II)—a U.S. Department of Energy (DOE) Office of Science User Facility at DOE's Brookhaven National Laboratory—have used ultrabright x-rays to image single bacteria ...

Quantum science turns social

November 15, 2018

Researchers in a lab at Aarhus University have developed a versatile remote gaming interface that allowed external experts as well as hundreds of citizen scientists all over the world to optimize a quantum gas experiment ...

Bursting bubbles launch bacteria from water to air

November 15, 2018

Wherever there's water, there's bound to be bubbles floating at the surface. From standing puddles, lakes, and streams, to swimming pools, hot tubs, public fountains, and toilets, bubbles are ubiquitous, indoors and out.

Terahertz laser pulses amplify optical phonons in solids

November 15, 2018

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg/Germany presents evidence of the amplification of optical phonons ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.