Enhanced power factor in transparent thermoelectric nanowire materials

November 8, 2018, Osaka University
The concept to control electron and phonon transport in Embedded-ZnO nanowire structure for thermoelectric performance enhancement. In transparent materials, the increase of thermoelectric power factor and the decrease of thermal conductivity were realized due to the scattering of low-energy electrons and phonons, and the transmission of high-energy electrons. Credit: Osaka University

A research group led by Professor Yoshiaki Nakamura of Osaka University successfully developed a methodology for enhancing thermoelectric power factor while decreasing thermal conductivity. By introducing ZnO nanowires into ZnO films, the thermoelectric power factor became three times greater than that of ZnO film without ZnO nanowires.

For the development of high-performance thermoelectric materials, expensive and toxic heavy elements have often been used; however, the high cost and toxicity have limited the social use of such thermoelectric materials. In this research, Nakamura and his team developed novel nanostructured films (Embedded-ZnO nanowire structure) composed of low-cost and environmentally friendly ZnO. In the developed films, the thermoelectric power factor was increased by selective transmission of energetic electrons through nanowire interfaces with intentionally controlled energy barriers, and thermal was decreased by scattering phonons at the nanowire interfaces. It is anticipated that the success of this research will lead to the realization of high-performance transparent thermoelectric devices, which will enable energy recovery from transparent objects such as window glass and transparent electronic devices.

Thermoelectric generation converting heat to electricity has drawn much attention as a new energy source. Window glass with differing indoor and outdoor temperatures is anticipated as a heat source for thermoelectric generation, requiring transparent thermoelectric materials with high thermoelectric performance. Thermoelectric performance requires a high Seebeck coefficient, , and low thermal conductivity. However, these three parameters are intercorrelated, leading to difficulty in performance enhancement. So far, expensive and toxic heavy element materials with have often been used for the development of high-performance thermoelectric materials, limiting the use of thermoelectric generation. On the other hand, low-cost and environmentally friendly light element-based materials exhibit low due to their high thermal conductivity in general. However, it was reported that nanostructuring achieved a significant reduction of thermal conductivity, and light element-based materials could be candidates for thermoelectric materials. But, there is still another problem in that the nanostructure scattered not only phonons but also electrons, resulting in a reduction of thermoelectric power factor.

The increase of thermoelectric power factor by introducing nanowires. Embedded-ZnO nanowire structure exhibited a thermoelectric power factor 3 times larger than that of ZnO film without nanowires. Credit: Osaka University

Nakamura and his team successfully developed low-cost and environmentally friendly ZnO films, including surface-controlled ZnO nanowire (Embedded-ZnO nanowire structure), for the first time in the world. Embedded-ZnO nanowire structure film with high optical transmittance in visible range is anticipated as a transparent thermoelectric material. In the structure, electron energy barrier height was controlled by modulating the dopant concentration at the nanowire interface, which enabled the increase of Seebeck coefficient due to selective transmission of high-energy electrons and scattering of low-energy electrons. High electrical conductivity is also anticipated because the ZnO crystal is epitaxially formed at the nanowire interface, leading to relatively high electrical conductivity of high-energy electrons. Furthermore, thermal conductivity is also decreased by an increase in phonon scattering at the nanowire interface (Figure 1).

Embedded-ZnO nanowire structures with nanowire areal density of more than 4×109 cm-2 exhibited a thermoelectric power factor 3 times larger than that of ZnO film without nanowires (Figure 2). It was confirmed that the dopant concentration was modulated at the interfaces by transmission electron microscopy observation of nanowire interfaces. The measurements of Seebeck coefficient and electrical conductivity in low temperature range (<300 K) showed the anomalous behaviors attributed to the electron transport controlled by energy barrier height. Furthermore, the energy barrier height was found to be several tens of meV through theoretical analysis of the experimental data. In addition, thermal conductivity of the embedded-ZnO nanowire structure was 20% smaller than that of ZnO film without because of the phonon scattering enhancement due to the introduction of the nanowire . These results indicate simultaneous successes: an increase of thermoelectric power factor and a decrease of thermal conductivity. The optical measurement showed that the structure had optical transmittance of about 60% in visible range, which is comparable to the value of a window of a building (Figure 3).

Transparent thermoelectric material using ZnO nanowires. Embedded-ZnO nanowire structure exhibits optical transparency. Credit: Osaka University
Future work

In the future, it will be possible to greatly decrease the of embedded-ZnO nanowire structure by increasing nanowire areal density. The thermoelectric devices composed of with this structure are expected to be realized and see widespread use due to their use of low-cost and environmentally friendly ZnO. Furthermore, the concept of "Modulating energy barrier height by controlling dopant concentration" can be applied not only to ZnO but also to other promising , which will accelerate the development of various high-performance .

Explore further: Reusing waste energy with 2-D electron gas

More information: Takafumi Ishibe et al, Methodology of Thermoelectric Power Factor Enhancement by Controlling Nanowire Interface, ACS Applied Materials & Interfaces (2018). DOI: 10.1021/acsami.8b13528

Related Stories

Reusing waste energy with 2-D electron gas

November 20, 2017

More than 60 percent of the energy produced by fossil fuels is lost as heat. Thermoelectric energy conversion has attracted much attention as a way to convert waste heat from power plants, factories and cars into electricity. ...

Converting heat into electricity with pencil and paper

February 19, 2018

Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive ...

Recommended for you

Solution for next generation nanochips comes out of thin air

November 19, 2018

Researchers at RMIT University have engineered a new type of transistor, the building block for all electronics. Instead of sending electrical currents through silicon, these transistors send electrons through narrow air ...

Scientists create atomic scale, 2-D electronic kagome lattice

November 19, 2018

Scientists from the University of Wollongong (UOW), working with colleagues at China's Beihang University, Nankai University, and Institute of Physics at Chinese Academy of Sciences, have successfully created an atomic scale, ...

Graphene flickers at 400Hz in 2500ppi displays

November 16, 2018

With virtual reality (VR) sizzling in every electronic fair, there is a need for displays with higher resolution, frame rates and power efficiency. Now, a joint collaboration of researchers from SCALE Nanotech, Graphenea ...

Solving mazes with single-molecule DNA navigators

November 16, 2018

The field of intelligent nanorobotics is based on the great promise of molecular devices with information processing capabilities. In a new study that supports the trend of DNA-based information carriers, scientists have ...

A way to make batteries almost any shape desired

November 16, 2018

A team of researchers from Korea Advanced Institute of Science and Technology, Harvard University and Korea Research Institute of Chemical Technology has developed a way to make batteries in almost any shape that can be imagined. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.