Nanoplatelets improve LCD and LED screens

November 5, 2018, Asociacion RUVID
Climente explains the new nanoplatelets. Credit: Asociación RUVID

Researchers at the Physical and Analytical Chemistry department of the Universitat Jaume I (UJI) of Castellón, Spain, have taken part in the design of semiconductor nanoplatelets with a broadened range of colours to improve LCD and LED screens, thanks to an international collaboration headed by the University of Ghent. The results of this research, in which the ICFO-Barcelona and the Italian Technology Institute also took part, has been published in Nano Letters.

Physical Chemistry professor at the UJI Juan Ignacio Climente explains that the semiconductor structures for optical devices heretofore "offered intense and pure purple and green colours, but the output of other colours was lacklustre. With a synthetic innovation, this study has made it possible to broaden the optimal results to yellow, orange and red."

The joint work by the Quantic Chemistry Group of the UJI, coordinated by professor Juan Ignacio Climente along with the research group of Dr. Iwan Moreels and experts of other European universities, has led to significant progress in the development of for optic devices.

Specifically, according to Climente, "We have conducted mechano-quantic calculations that show that the new colours of the light emitted are a result of the nanoplatelet's greater thickness synthesised by our partners, which offer new knowledge on the unique optic properties of these materials." "The new synthetic route enables the broadening of the traditional thickness (3.5-5.5 layers of atoms) to 8.5 layers."

Second generation of quantum dot displays

The semiconductor nanoplatelets are intended for the second generation of so-called quantum dot displays by offering more pure and intense colours than current technology for LCD or LED screens. Furthermore, these nanotechnological materials may also be added to laser devices and optic sensors.

The Quantic Chemistry Group of the Superior Technology and Experimental Sciences School of the UJI specialises in the theoretic study of nanocrystals. Its researchers model these systems with quantic mechanic tools to understand and predict their physical behaviour. Recently, this group showed that the new semiconductor nanoplatelets synthesised in laboratories can improve the luminosity of LEDs, lasers and LCD screens of computers or televisions as they make it possible to minimise energetic losses compared to current materials.

Explore further: Part-organic invention can be used in bendable mobile phones

More information: Sotirios Christodoulou et al. Chloride-Induced Thickness Control in CdSe Nanoplatelets, Nano Letters (2018). DOI: 10.1021/acs.nanolett.8b02361

Related Stories

Part-organic invention can be used in bendable mobile phones

October 5, 2018

Engineers at ANU have invented a semiconductor with organic and inorganic materials that can convert electricity into light very efficiently, and it is thin and flexible enough to help make devices such as mobile phones bendable.

Creating displays with richer colours

July 9, 2018

National University of Singapore researchers have developed a colour-enhancement film that could bring richer and more natural colours to next-generation flat-panel electronic displays.

Platelets instead of quantum dots

April 4, 2017

A team of researchers led by ETH Zurich professor David Norris has developed a model to clarify the general mechanism of nanoplatelet formation. Using pyrite, they also managed to confirm their theory.

Recommended for you

Solving mazes with single-molecule DNA navigators

November 16, 2018

The field of intelligent nanorobotics is based on the great promise of molecular devices with information processing capabilities. In a new study that supports the trend of DNA-based information carriers, scientists have ...

A way to make batteries almost any shape desired

November 16, 2018

A team of researchers from Korea Advanced Institute of Science and Technology, Harvard University and Korea Research Institute of Chemical Technology has developed a way to make batteries in almost any shape that can be imagined. ...

Graphene flickers at 400Hz in 2500ppi displays

November 16, 2018

With virtual reality (VR) sizzling in every electronic fair, there is a need for displays with higher resolution, frame rates and power efficiency. Now, a joint collaboration of researchers from SCALE Nanotech, Graphenea ...

'Smart skin' simplifies spotting strain in structures

November 15, 2018

Thanks to one peculiar characteristic of carbon nanotubes, engineers will soon be able to measure the accumulated strain in an airplane, a bridge or a pipeline – or just about anything – over the entire surface or down ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.