Part-organic invention can be used in bendable mobile phones

October 5, 2018, Australian National University
Part-organic invention can be used in bendable mobile phones
Credit: Australian National University

Engineers at ANU have invented a semiconductor with organic and inorganic materials that can convert electricity into light very efficiently, and it is thin and flexible enough to help make devices such as mobile phones bendable.

The invention also opens the door to a new generation of high-performance made with organic materials that will be biodegradable or that can be easily recycled, promising to help substantially reduce e-waste.

The huge volumes of e-waste generated by discarded electronic devices around the world is causing irreversible damage to the environment. Australia produces 200,000 tonnes of e-waste every year—only four per cent of this waste is recycled.

The organic component has the thickness of just one atom—made from just carbon and hydrogen—and forms part of the that the ANU team developed. The inorganic component has the thickness of around two atoms. The hybrid structure can convert electricity into light efficiently for displays on mobile phones, televisions and other electronic devices.

Lead senior researcher Associate Professor Larry Lu said the invention was a major breakthrough in the field.

"For the first time, we have developed an ultra-thin electronics component with excellent semiconducting properties that is an organic-inorganic hybrid structure and thin and flexible enough for future technologies, such as bendable mobile phones and display screens," said Associate Professor Lu from the ANU Research School of Engineering.

Credit: Australian National University

Ph.D. researcher Ankur Sharma, who recently won the ANU 3-Minute Thesis competition, said experiments demonstrated the performance of their semiconductor would be much more efficient than conventional semiconductors made with such as silicon.

"We have the potential with this semiconductor to make mobile phones as powerful as today's supercomputers," said Mr Sharma from the ANU Research School of Engineering.

"The light emission from our semiconducting structure is very sharp, so it can be used for high-resolution displays and, since the materials are ultra-thin, they have the flexibility to be made into bendable screens and mobile phones in the near future."

The team grew the organic semiconductor component molecule by molecule, in a similar way to 3-D printing. The process is called chemical vapour deposition.

"We characterised the opto-electronic and electrical properties of our invention to confirm the tremendous potential of it to be used as a future semiconductor component," Associate Professor Lu said.

"We are working on growing our semiconductor component on a large scale, so it can be commercialised in collaboration with prospective industry partners."

Explore further: Designing a 'solar tarp,' a foldable, packable way to generate power from the sun

More information: Linglong Zhang et al. Efficient and Layer-Dependent Exciton Pumping across Atomically Thin Organic-Inorganic Type-I Heterostructures, Advanced Materials (2018). DOI: 10.1002/adma.201803986

Related Stories

Levitating 2-D semiconductors for better performance

August 28, 2018

Atomically thin 2-D semiconductors have been drawing attention for their superior physical properties over silicon semiconductors; nevertheless, they are not the most appealing materials due to their structural instability ...

Recommended for you

Taking steps toward a wearable artificial kidney

October 17, 2018

There just aren't enough kidney transplants available for the millions of people with renal failure. Aside from a transplant, the only alternative for patients is to undergo regular dialysis sessions to clear harmful cellular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.