Do kitchen items shed antimicrobial nanoparticles after use?

November 8, 2018, National Institute of Standards and Technology
A scanning electron micrograph showing a cluster of silver nanoparticles released by scratching a nanosilver-infused cutting board. The cluster is approximately 900 nanometers across, or about the size of a typical bacterium. Credit: NIST

Because of their antimicrobial and antifungal properties, silver nanoparticles measuring between one and 100 nanometers (billionth of a meter) in size, are being incorporated outside the United States into a variety of kitchen products known as food contact materials (FCMs). Among the nanosilver-infused FCMs now on the market overseas are spatulas, baby mugs, storage containers and cutting boards. However, the use of these items raises concerns that the nanoparticles in them will migrate into foods and the environment, and in turn, whether this poses risks to human health.

To address these issues, government bodies around the world have published guidance documents, set policies and considered regulations. These have been largely based on research that examined nanosilver release from new, unused consumer products or laboratory surrogates, but not actual FCMs during and after use. In a new paper, scientists from the U.S. Food and Drug Administration (FDA), the National Institute of Standards and Technology (NIST) and the U.S. Consumer Product Safety Commission (CPSC) describe how they simulated knife motion, washing and scratching on nanosilver-containing cutting boards to see if consumer use practices affect nanoparticle release.

Using a developed at NIST, five different "use scenarios"—each simulating a different type and level of wear commonly seen with human use—were conducted by moving three abrasive surfaces back and forth across samples of nanosilver-enabled cutting board material.

The researchers hope their test method will help regulatory bodies identify if any safety or health risks exist from in food contact materials, and if so, find ways to deal with them appropriately before they are approved for sale in the United States.

"A custom-designed razor blade replicated knife cuts, a piece of scrubbing pad mimicked normal dishwashing conditions and a tungsten carbide burr imitated scratching by metal utensils," said NIST physical scientist Keana C.K. Scott, one of the authors on the paper published in the journal Food Additives and Contaminants: Part A. "The washing and scratching scenarios were done at one or two levels of abrasion; for example, 500 and 5,000 cycles for the scratching simulation."

After the abrasion runs, the NIST researchers used sticky tape to see if loose nanoparticles were present and could be removed from the worn cutting-board samples. Scanning electron microscopy (SEM) at NIST and inductively coupled plasma mass spectrometry (an incredibly sensitive method for detecting metal ions) at the FDA showed that bits of cutting board polymer were released by abrasion and that some of these contained embedded silver. However, free silver nanoparticles were not found on the SEM-examined tape.

FDA scientists also determined how much, if any, and intact silver nanoparticles would migrate away from cutting boards when exposed to water and acetic acid. They found that the concentrations of ionic and particulate silver found in both solutions were very low. In fact, there was no discernable difference in the silver migration observed from the new and unused nanosilver-enabled cutting boards compared with the ones that were cut, washed or scratched.

Based on their findings, the NIST and FDA researchers suggested that future studies should examine whether a combination of use scenarios would increase the amount of silver ions or nanoparticles released. For example, they said, perhaps washing the cutting board after scratching would have a different impact.

"Now that we've shown that the migration evaluation method works, it can be used to help answer this and other questions about what happens when people use FCMs with ," said NIST research chemist David Goodwin, another author on the paper. "In turn, those findings should be valuable for the bodies that must determine any health or safety risks."

Explore further: Nanoparticles in the environment more harmful than thought

More information: Susana Addo Ntim et al, Effects of consumer use practices on nanosilver release from commercially available food contact materials, Food Additives & Contaminants: Part A (2018). DOI: 10.1080/19440049.2018.1529437

Related Stories

Video: How silver nanoparticles cut odors

September 20, 2018

Trendy workout clothes may advertise that special silver nanoparticles embedded in the fabric will cut the sweaty odor that builds up from repeated gym visits. It turns out there's some truth to these claims.

Wiping out bacteria with nanoparticle-cotton fibers

July 4, 2017

Silver has been used as an antimicrobial agent for more than 100 years. Today, silver in the form of nanoparticles is incorporated in such products as plastic food containers, medical materials, and clothing. In textiles, ...

Silver nanoparticles toxic for aquatic organisms

September 18, 2018

Silver nanoparticles are increasingly being used in consumer products, such as clothing and personal care products, in the medical and pharmaceutical industry, and in the food industry. That is why their presence is expected ...

Brain-eating amoebae halted by silver nanoparticles

October 24, 2018

Halloween is just around the corner, and some people will celebrate by watching scary movies about brain-eating zombies. But even more frightening are real-life parasites that feed on the human brain, and they can be harder ...

New evidence for natural synthesis of silver nanoparticles

May 11, 2011

Nanoparticles of silver are being found increasingly in the environment—and in environmental science laboratories. Because they have a variety of useful properties, especially as antibacterial and antifungal agents, ...

Recommended for you

Solution for next generation nanochips comes out of thin air

November 19, 2018

Researchers at RMIT University have engineered a new type of transistor, the building block for all electronics. Instead of sending electrical currents through silicon, these transistors send electrons through narrow air ...

Scientists create atomic scale, 2-D electronic kagome lattice

November 19, 2018

Scientists from the University of Wollongong (UOW), working with colleagues at China's Beihang University, Nankai University, and Institute of Physics at Chinese Academy of Sciences, have successfully created an atomic scale, ...

Graphene flickers at 400Hz in 2500ppi displays

November 16, 2018

With virtual reality (VR) sizzling in every electronic fair, there is a need for displays with higher resolution, frame rates and power efficiency. Now, a joint collaboration of researchers from SCALE Nanotech, Graphenea ...

Solving mazes with single-molecule DNA navigators

November 16, 2018

The field of intelligent nanorobotics is based on the great promise of molecular devices with information processing capabilities. In a new study that supports the trend of DNA-based information carriers, scientists have ...

A way to make batteries almost any shape desired

November 16, 2018

A team of researchers from Korea Advanced Institute of Science and Technology, Harvard University and Korea Research Institute of Chemical Technology has developed a way to make batteries in almost any shape that can be imagined. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.