Atomic parity violation research reaches new milestone

November 12, 2018, Universitaet Mainz
Experimental set-up of the ytterbium experiment at the Helmholtz Institute Mainz with the physicist Dr. Dionysis Antypas. Credit: Dionysis Antypas

A reflection always reproduces objects as a complete mirror image, rather than just its individual parts or individual parts in a completely different orientation. It's all or nothing, the mirror can't reflect just a little. This illustrates a fundamental symmetry principle in nature. For decades, physics assumed that the laws of nature in our world and in the mirror world would be identical, that parity would be preserved. Then in 1956, in the realm of elementary particles, or more precisely in the realm of the weak interaction, researchers discovered a violation of this principle. Parity violation has been a subject of scientific research ever since.

Physicists at Johannes Gutenberg University Mainz (JGU) have recently succeeded in observing parity violation in ytterbium atoms with different numbers of neutrons. The initial effect of the measurements is to confirm the predictions of the Standard Model of particle physics that atoms with different numbers of neutrons would demonstrate parity violation. The research was published in the renowned Nature Physics journal.

Parity violation is only known to occur in the weak interaction, one of the four fundamental forces of nature. It was first discovered in beta decay in 1956, in atoms in 1979, and was subsequently studied in various elements. In 1995 at the University of California in Berkeley, Professor Dmitry Budker started performing precision measurements on the element ytterbium, a rare earth metal. It was this work he brought with him when he came to Mainz University in 2014. "Our research involves various isotopes of ytterbium. Isotopes are atoms with the same number of protons but different numbers of neutrons in the nucleus," explained Dr. Dionysis Antypas of the Helmholtz Institute Mainz (HIM). "We selected a chain of four of ytterbium's seven isotopes and confirmed the predictions of the Standard Model: the more neutrons in the nucleus, the greater the parity violation effect," said Antypas, summarizing the results of four years of work in the project.

Comparing the effect in different isotopes was first proposed by Prof. Victor Flambaum in 1986. Flambaum, an Australian physicist from the University of New South Wales, has been a fellow of Mainz University's Gutenberg Research College (GRC) for two years and performs collaborative research with the JGU scientists. The physicists conducted the research using an apparatus at the Helmholtz Institute Mainz: in the presence of an electric and a magnetic field, ytterbium atoms are excited by laser light and the amplitude of the parity violation is measured.

"The latest findings mark a significant milestone in research into atomic ," said Budker, summarizing the data. "They are also a very significant milestone on the road to future research objectives." The scientists' measurements also offer information on an additional Z boson. Z bosons mediate the . Scientists in the field speculate the existence of a further Z boson, referred to as the "Z prime" or "Z" with a much smaller mass than that of the established Z boson.

Explore further: Ytterbium's broken symmetry: The largest parity violations ever measured in an atom

More information: D. Antypas et al. Isotopic variation of parity violation in atomic ytterbium, Nature Physics (2018). DOI: 10.1038/s41567-018-0312-8

Related Stories

Using an electron to probe the tiny magnetic core of an atom

August 12, 2015

Precise information about the magnetic properties of nuclei is critical for studies of what's known as the 'weak force.' While people do not feel this force in the same way they feel electricity or gravity, its effects are ...

New source of asymmetry between matter and antimatter

January 31, 2017

The LHCb experiment has found hints of what could be a new piece of the jigsaw puzzle of the missing antimatter in our universe. They have found tantalising evidence of a phenomenon dubbed charge-parity (CP) violation in ...

Recommended for you

Compelling evidence for small drops of perfect fluid

December 10, 2018

Nuclear physicists analyzing data from the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC)—a U.S. Department of Energy (DOE) Office of Science user facility for nuclear physics research at Brookhaven National ...

Supercomputers without waste heat

December 10, 2018

Generally speaking, magnetism and the lossless flow of electrical current ("superconductivity") are competing phenomena that cannot coexist in the same sample. However, for building supercomputers, synergetically combining ...

Engineers invent groundbreaking spin-based memory device

December 7, 2018

A team of international researchers led by engineers from the National University of Singapore (NUS) have invented a new magnetic device to manipulate digital information 20 times more efficiently and with 10 times more stability ...

Multichannel vectorial holographic display and encryption

December 7, 2018

Holography is a powerful tool that can reconstruct wavefronts of light and combine the fundamental wave properties of amplitude, phase, polarization, wave vector and frequency. Smart multiplexing techniques (multiple signal ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Hyperfuzzy
not rated yet Nov 12, 2018
This makes no sense! Define a Mirror made of charges! For parity, demonstrate that the number of positive charges do not ever equal the negative charges? So what? The fields from each charge creating the initial image affects every other charge; then, you are measuring image quality? WTF is Atomic Violation!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.