New CRISPR tool opens up more of the genome for editing

October 24, 2018, Massachusetts Institute of Technology
CRISPR-associated protein Cas9 (white) from Staphylococcus aureus based on Protein Database ID 5AXW. Credit: Thomas Splettstoesser (Wikipedia, CC BY-SA 4.0)

The genome editing system CRISPR has become a hugely important tool in medical research, and could ultimately have a significant impact in fields such as agriculture, bioenergy, and food security.

The targeting system can travel to different points on the , guided by a short sequence of RNA, where a DNA-cutting enzyme known as Cas9 then makes the desired edits.

However, despite the gene-editing tool's considerable success, CRISPR-Cas9 remains limited in the number of locations it can visit on the genome.

That is because CRISPR needs a specific sequence flanking the target on the genome, known as a protospacer adjacent motif, or PAM, to allow it to recognize the site.

For example, the most widely used Cas9 enzyme, Streptococcus pyogenes Cas9 (SpCas9), requires two G nucleotides as its PAM sequence, significantly restricting the number of locations it can target, to around 9.9 percent of sites on the genome.

As yet, there are only a handful of CRISPR enzymes with minimal PAM requirements, meaning they are able to target a wider range of locations.

Now researchers at the MIT Media Lab, led by Joseph Jacobson, a professor of media arts and sciences and head of the Molecular Machines research group, have discovered a Cas9 enzyme that can target almost half of the locations on the genome, significantly widening its potential use. They report their findings in the Science Advances.

"CRISPR is like a very accurate and efficient postal system, that can reach anywhere you want to go very precisely, but only if the ZIP code ends in a zero," Jacobson says. "So it is very accurate and specific, but it limits you greatly in the number of locations you can go to."

To develop a more general CRISPR system, the researchers implemented computational algorithms to conduct a bioinformatics search of bacterial sequences, to determine if there were any similar enzymes with less restrictive PAM requirements.

To carry out the search, the researchers developed a data analysis software tool, which they called SPAMALOT (Search for PAMs by Alignment of Targets).

This revealed a number of interesting possible enzymes, but no clear winner. So the team then built synthetic versions of the CRISPRs in the laboratory, to evaluate their performance.

They found that the most successful enzyme, a Cas9 from Streptococcus canis (ScCas9), was strikingly similar to the Cas9 enzyme already widely used, according to co-lead author Pranam Chatterjee, a graduate student in the Media Lab, who carried out the research alongside fellow graduate student Noah Jakimo.

"The enzyme looks almost identical to the one that was originally discovered ... but it is able to target DNA sequences that the commonly used enzyme cannot," Chatterjee says.

Rather than two G nucleotides as its PAM sequence, the new needs just one G, opening up far more locations on the genome.

This should allow CRISPR to target many disease-specific mutations that have previously been out of reach of the system.

For example, a typical gene is around 1,000 bases in length, giving researchers a number of different locations to target if their aim is to simply knock out the entire gene, Jacobson says.

However, many diseases, such as sickle cell anemia, are caused by the mutation of a single base, making them much more difficult to target.

"Base editing is not just a matter of hitting that gene anywhere over the 1,000 bases and knocking it out; it is a matter of going in and correcting, in a very precise way, that one base that you want to change," Jacobson says.

"You need to be able to go to that very exact location, put your piece of CRISPR machinery right next to it, and then with a base editor—another protein that's attached to the CRISPR—go in and repair or change the base," he says.

The new CRISPR tool could be particularly helpful in such applications.

"We are excited to get ScCas9 into the hands of the community and receive their feedback for future development," Chatterjee says.

The researchers are now hoping to use their technique to find other enzymes that could expand the targeting range of the CRISPR system even further, without reducing its accuracy, according to Jacobson.

"We feel confident of being able to go after every address on the genome," he says.

Explore further: Biochemists discover cause of genome editing failures with hyped CRISPR system

More information: "Minimal PAM specificity of a highly similar SpCas9 ortholog" Science Advances (2018).

Related Stories

A way to detect likelihood of off-target cuts in CRISPR-Cas9

September 13, 2018

An international team of researchers has developed a way to detect the likelihood of making off-target cuts when using the CRISPR-Cas9 gene editing technique. In their paper published in the journal Nature, the group describes ...

Evolving a more versatile CRISPR-Cas9

March 2, 2018

For all of Cas9's potential in research and therapeutics, it—as well as other enzymes in the CRISPR-associated family—has limitations. In order to recognize and bind to a DNA sequence, Cas9 needs a particular stretch ...

Alternative CRISPR system is less specific, more robust

September 13, 2017

The genetic tool adept at line-by-line gene editing, CRISPR, has revolutionized the ability of scientists to manipulate genes for experimental, and perhaps someday therapeutic, purposes. But it comes in several varieties. ...

Genome-editing tool could increase cancer risk

June 11, 2018

Therapeutic use of gene editing with the CRISPR-Cas9 technique may inadvertently increase the risk of cancer, according to a new study from Karolinska Institutet, Sweden, and the University of Helsinki, Finland, published ...

Recommended for you

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...

OSIRIS-REx reveals asteroid Bennu has big surprises

March 19, 2019

A NASA spacecraft that will return a sample of a near-Earth asteroid named Bennu to Earth in 2023 made the first-ever close-up observations of particle plumes erupting from an asteroid's surface. Bennu also revealed itself ...

The powerful meteor that no one saw (except satellites)

March 19, 2019

At precisely 11:48 am on December 18, 2018, a large space rock heading straight for Earth at a speed of 19 miles per second exploded into a vast ball of fire as it entered the atmosphere, 15.9 miles above the Bering Sea.

Levitating objects with light

March 19, 2019

Researchers at Caltech have designed a way to levitate and propel objects using only light, by creating specific nanoscale patterning on the objects' surfaces.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Oct 24, 2018
There is a program out there called SPAMALOT that keeps sending me emails telling me that I need a longer penis. I think that name is taken.

Just sayin...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.