A way to detect likelihood of off-target cuts in CRISPR-Cas9

September 13, 2018 by Bob Yirka, Phys.org report
Credit: CC0 Public Domain

An international team of researchers has developed a way to detect the likelihood of making off-target cuts when using the CRISPR-Cas9 gene editing technique. In their paper published in the journal Nature, the group describes the new technique and how well it worked when tested.

CRISPR-Cas9 has held out promise of a revolution in gene editing for medical purposes, but has yet to live up to expectations. This is mostly because the technique has a serious flaw—it sometimes cuts non-targeted parts of DNA, which can, of course, be a very serious problem. In this new effort, the researchers have come up with a way of testing proposed guide RNA prior to use in CRISPR-Cas9 gene editing.

The idea behind this new research is to identify the parts of DNA that could be mistaken for a real target by guide RNA. If such parts are found, then a different guide RNA can be selected. This process can be repeated until a guide RNA is found that will only select the actual targets.

The testing method developed by the researchers consisted of cutting groups of base pairs from DNA strands from a test subject. Next, they applied adapters to circularize the DNA in each group. After that, they added a Cas9 nuclease and the proposed guide RNA—this step resulted in cuts to the DNA at certain sites. Then another pool of nucleases was used to degrade the circular DNA that did not get cut by the CRISPR-Cas-9, giving the researchers material to sequence for use in comparing places where cuts did occur. This allowed them to spot cuts that were not intended targets.

The researchers tested their method using mice. They found that their method detects guide RNA known to make off-target cuts. They also found that when they used guide RNA that had been found to produce no erroneous cuts, their test showed it was likely error-free.

The team sums up their work by suggesting the importance of selecting the right guide RNA for CRISPR-Cas9 editing to avoid off-target cuts—and their technique can ensure sure that happens.

Explore further: Researchers show that nucleosomes can inhibit CRISPR-Cas9 cleavage efficiency

More information: Pinar Akcakaya et al. In vivo CRISPR editing with no detectable genome-wide off-target mutations, Nature (2018). DOI: 10.1038/s41586-018-0500-9

Related Stories

Genome-editing tool could increase cancer risk

June 11, 2018

Therapeutic use of gene editing with the CRISPR-Cas9 technique may inadvertently increase the risk of cancer, according to a new study from Karolinska Institutet, Sweden, and the University of Helsinki, Finland, published ...

Recommended for you

Genome duplication drives evolution of species

September 25, 2018

Many wild and cultivated plants arise through the combination of two species. The genome of these so-called polyploid species often consists of a quadruple set of chromosomes—a double set for each parental species—and ...

Some female termites can reproduce without males

September 24, 2018

Populations of the termite species Glyptotermes nakajimai can form successful, reproducing colonies in absence of males, according to a study published in the open access journal BMC Biology.

Photosynthesis discovery could help next-gen biotechnologies

September 24, 2018

Researchers from The University of Queensland (UQ) and the University of Münster (WWU) have purified and visualized the 'Cyclic Electron Flow' (CEF) supercomplex, a critical part of the photosynthetic machinery in all plants, ...

How fruits got their eye-catching colors

September 24, 2018

Red plums. Green melons. Purple figs. Ripe fruits come in an array of greens, yellows, oranges, browns, reds and purples. Scientists say they have new evidence that plants owe their rainbow of fruit colors to the different ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.