Chemists suggest a new method to synthesise titanium nanoparticles for water purification

October 29, 2018, RUDN University
Credit: Natalia Deryugina

RUDN chemists have developed a new method for obtaining titanium-based nanoparticles to clean water from phenols—toxic aromatic hydrocarbons with an OH-group. The atoms of metals in the nanoparticles oxidize the pollutants under the influence of light and turn them into water and carbon dioxide. The new method will make the production of such nanoparticles easier and cheaper. The results of the work were published in the Journal of Molecular Liquids.

Phenols are toxic chemical compounds used in the manufacture of rubber, plastic, fuel, pesticides, and other substances. Phenol releases are among the most common causes of natural water pollution and the death of aquatic fauna. Phenol suppresses plant growth, causes respiratory distress in animals and reduces their mobility. Self-purification of water bodies from phenols takes time, and the toxic compound spreads further due to currents.

RUDN chemists found a new way to neutralize damaging releases using the of titanate salts. Besides titanium and oxygen, they contain the atoms of metals (e.g. magnesium, chrome, or cobalt) that can accept and release electrons in the phenols oxidation reaction under the influence of light. As a result of oxidation, phenols turn into water and carbon dioxide. The authors of the work suggested synthesizing these nanoparticles on the basis of titanium butoxide (organic titanium oxide) and metal salts in the presence of an organic solvent.

"Photocatalysts are of specific interest for us as water purifying agents. They accelerate the disintegration of dangerous substances under light, including visible light. The end products of such a reaction are and that are completely save for the environment. In our work, we've described a new method of synthesizing the nanoparticles that oxidize phenols under the influence of light, quickly and at relatively low temperatures," said Yahua Absalan, a post-graduate of the Department of General Chemistry at the Faculty of Physics, Mathematics, and Natural Sciences, RUDN.

In experiments with varying temperatures, the reaction showed its highest speed (3.5 hours) at 550 degrees С. Previously, obtaining nanoparticles like these required temperatures around 750 degrees С. The new method is less energy-consuming and therefore makes the production of titanium nanoparticles cheaper.

"Metal titanates in the form of nanoparticles can act as effective photocatalysts, accelerating the disintegration of dangerous substances in industrial emissions. Previously, we synthesized them at 750 degrees С using expensive and complex equipment. The improved methodology will make the production of nanoparticles more affordable," concluded Yahua Absalan.

RUDN chemists tested the efficiency of the obtained nanoparticles by adding pyrocatechol (a phenolic compound) to them. Under the influence of light, titanium nanoparticles destroyed the molecules of this dangerous substance. The nanoparticles containing erbium showed the best results—around 84 percent disintegrated after irradiation with visible . The nanoparticles demonstrated high stability: one dose could be used four times without any changes in efficiency. Later on, the structure of the nanoparticles altered, and their efficiency reduced.

Explore further: Chemists convert titanium nanoparticles into an efficient weapon against pollution

More information: Yahya Absalan et al. Doped rare and transition metal perovskite-type titanate nanoparticles: A new method for developing synthesizing and photocatalytic ability, Journal of Molecular Liquids (2018). DOI: 10.1016/j.molliq.2018.07.100

Related Stories

Chemists test a new nanocatalyst for obtaining hydrogen

October 17, 2018

A chemist from RUDN was the first to use catalysts with ruthenium nanoparticles to obtain hydrogen under the influence of visible light and UV radiation. In the future, such catalysts may be used for large-scale production ...

Photoelectrode that can harvest 85 percent of visible light

September 10, 2018

Scientists have developed a photoelectrode that can harvest 85 percent of visible light in a 30 nanometers-thin semiconductor layer between gold layers, converting light energy 11 times more efficiently than previous methods.

Recommended for you

Solution for next generation nanochips comes out of thin air

November 19, 2018

Researchers at RMIT University have engineered a new type of transistor, the building block for all electronics. Instead of sending electrical currents through silicon, these transistors send electrons through narrow air ...

Scientists create atomic scale, 2-D electronic kagome lattice

November 19, 2018

Scientists from the University of Wollongong (UOW), working with colleagues at China's Beihang University, Nankai University, and Institute of Physics at Chinese Academy of Sciences, have successfully created an atomic scale, ...

Graphene flickers at 400Hz in 2500ppi displays

November 16, 2018

With virtual reality (VR) sizzling in every electronic fair, there is a need for displays with higher resolution, frame rates and power efficiency. Now, a joint collaboration of researchers from SCALE Nanotech, Graphenea ...

Solving mazes with single-molecule DNA navigators

November 16, 2018

The field of intelligent nanorobotics is based on the great promise of molecular devices with information processing capabilities. In a new study that supports the trend of DNA-based information carriers, scientists have ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.