Biologists discover source for boosting tumor cell drug sensitivity

October 29, 2018, University of California - San Diego
Pancreatic cancer cells deficient in the expression of the human gene known as Schlafen 11 and resistant to chemotherapy (left panels) were re-sensitized to chemotherapeutic treatment (middle and right panels) by inhibiting the expression of the transfer RNA known as tRNA-Leu-TAA through specially designed antisense oligonucleotides. Credit: Manqing Li, Michael David Lab, UC San Diego

DNA-damaging agents, or "DDAs," make up the most widely used group of cancer drugs. Yet their therapeutic success has been curtailed by drug resistance—either present in cancer cells from the disease onset or arising during treatment.

Now, biologists at the University of California San Diego have discovered a new way of re-sensitizing drug-resistant human to the potency of DDAs.

UC San Diego Project Scientist Manqing Li, Professor Michael David and their colleagues describe on October 29 in Nature Structural and Molecular Biology how a human gene known as Schlafen 11 controls the sensitivity of tumor to DDAs. As such, their research may pave the way to new strategies to overcome chemotherapeutic drug resistance.

In 1998, David Schwarz, working in UC San Diego Biological Sciences Professor Stephen Hedrick's lab, discovered the first Schlafen gene in mice. He named it for the German word for sleep because the gene's protein product can cause cells to stop dividing. In 2012 David and Li examined Schlafen 11, a human genetic counterpart of the original discovery, and uncovered its role in HIV replication. They found that the human Schlafen 11 gene encodes a protein that hinders the replication of HIV in infected human cells by blocking the synthesis of viral proteins without suppressing the host cell's overall ability to synthesize proteins.

In the new follow-on study focusing on tumors, the researchers discovered a similar selective effect of Schlafen 11 on two "master controllers" of the DNA damage response: ATM and ATR, protein serine/threonine kinases known for their central roles in DNA damage repair.

"We found that if you expose cells that have Schlafen 11to DNA damaging agents, the Schlafen 11 protein gets activated and suppresses the synthesis of ATM and ATR—that's essentially what kills the tumor cells," said David, a professor in the Biological Sciences Section of Molecular Biology and UC San Diego Moores Cancer Center. "In cells that do not express Schlafen 11, you do not get this downregulation of ATM/ATR and that essentially allows the tumor cells to survive."

Probing deeper into the mechanisms of how Schlafen 11 works on a molecular level, the researchers found that the activated Schlafen 11 protein cleaves a specific subset of transfer RNAs, which feature an extra stem loop in their structures. These tRNAs are not of the classic "three-leaf clover"-type design, but instead have distinctive "four-leaf clover" designs, distinguishing marks that likely serve as target points for Schlafen 11. Among those affected are all transfer RNAs for the amino acids leucine and serine. One of these in particular, "tRNA-Leu-TAA," is of extremely low abundance in the cell, but nevertheless the corresponding codon is used with high frequency in the ATM and ATR genes. When this tRNA is destroyed by cleavage, ATM and ATR are among the most susceptible targets of protein synthesis inhibition by Schlafen 11.

Further investigation revealed that most of the genes involved in DNA damage repair display a similar skewing of their transfer RNA use towards tRNA-Leu-TAA as HIV does. The researchers then developed a new technique to re-sensitize Schlafen 11-deficient tumor cells to drugs by directly targeting tRNA-Leu-TAA. This intervention can influence the entire DNA damage repair pathway— including ATM and ATR—rather than inhibiting the function of one specific component at a time. Such a strategy, they say, could have significant potential in clinical cancer treatment and addressing the challenges of drug resistance.

Study coauthor Jean Wang, professor emeritus in UC San Diego's School of Medicine, says knowing how cancer cells escape death when their DNA is damaged will create new strategies to enhance cancer cell killing through chemotherapy treatment.

"These results suggest two ways to enhance the killing of by DNA-damaging drugs by adding 1) ATR inhibitors or 2) tRNA inhibitors," said Wang. "The paper is also of significance to the basic research on DNA damage response because it shows for the first time that regulation of tRNAs determines when a damaged cell will survive or die."

In addition to relevance to DNA damage and cancer, David notes that the new results carry potential applications in immunology and virology since the fundamental mechanisms behind Schlafen 11 are also at play in anti-HIV processes and likely with other viruses.

Explore further: Discovery may shed light on why some HIV-positive patients have more virus

More information: Manqing Li et al, DNA damage-induced cell death relies on SLFN11-dependent cleavage of distinct type II tRNAs, Nature Structural & Molecular Biology (2018). DOI: 10.1038/s41594-018-0142-5

Related Stories

Recommended for you

Complete world map of tree diversity

February 21, 2019

Biodiversity is one of Earth's most precious resources. However, for most places in the world, scientists only have a tiny picture of what this diversity actually is. Researchers at the German Centre for Integrative Biodiversity ...

'Butterfly-shaped' palladium subnano cluster built in 3-D

February 21, 2019

Miniaturization is the watchword of progress. Nanoscience, studying structures on the scale of a few atoms, has been at the forefront of chemistry for some time now. Recently, researchers at the University of Tokyo developed ...

Water is more homogeneous than expected

February 21, 2019

In order to explain the known anomalies in water, some researchers assume that water consists of a mixture of two phases, even under ambient conditions. However, new X-ray spectroscopic analyses at BESSY II, ESRF and Swiss ...

Squid could provide an eco-friendly alternative to plastics

February 21, 2019

The remarkable properties of a recently-discovered squid protein could revolutionize materials in a way that would be unattainable with conventional plastic, finds a review published in Frontiers in Chemistry. Originating ...

Female golden snub-nosed monkeys share nursing of young

February 21, 2019

An international team of researchers including The University of Western Australia and China's Central South University of Forestry and Technology has discovered that female golden snub-nosed monkeys in China are happy to ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.