Bio-inspired nanoreactors

October 15, 2018, Karlsruhe Institute of Technology
Scientists of KIT and QUT in Brisbane/Australia have developed bioinspired, catalytically active single-chain nanoparticles. Credit: Ella Maru

Catalysis, in the course of which a substance accelerates a chemical reaction, but remains unchanged, is of central importance to many industrial processes. To develop efficient catalysts optimized for various applications, researchers of different disciplines working in the Collaborative Research Center "Molecular Structuring of Soft Matter" (CRC 1176) of KIT were inspired by biological models. The chemists combined the structuring of natural enzymes with the design of synthetic macromolecules.

As reported by the scientists in the Journal of the American Chemical Society, their work is inspired by the structure of metallo-enzymes, catalytically active proteins containing a metal. They specifically insert metal ions into a tailored-made polymer framework. The results are catalytically active single-chain nanoparticles. "In first studies, these new multi-functional nanoreactors reached very promising results as regards both catalyst characteristics and product formation," say Professor Christopher Barner-Kowollik, Head of the Macromolecular Architectures Group of the Institute for Chemical Technology and Polymer Chemistry (ITCP), and Professor Peter Roesky, Head of the Chair for Inorganic Functional Materials of KIT's Institute for Inorganic Chemistry (AOC).

The catalytically active single-chain nanoparticles have been developed by the KIT-coordinated collaborative research center "Molecular Structuring of Soft Matter" (CRC 1176) funded by the German Research Foundation (DFG) in close cooperation with Queensland University of Technology (QUT) in Brisbane/Australia. Within this collaborative research center, scientists are working on theoretical, analytical, and synthetic processes to specifically adjust the chain length or sequence of the building blocks of large molecules, for instance. The goal is the controlled structuring of on the molecular level in three dimensions in order to obtain macromolecules precisely designed for defined functions.

Chemical Passwords and Molecular Tissues

Within CRC 1176, KIT researchers also found a way to reliably protect digitally transmitted sensitive information. They combined computer science and chemistry knowledge, i.e. a common encryption process and a password. It represents a chemical compound with a certain sequence of building blocks and attached side chains. Letters and numbers are assigned to the chemical components.

Another highlight of CRC 1176 are two-dimensional fabrics made of monomolecular polymer threads. To produce these tissues of a single molecular layer in thickness, the researchers used surface-mounted metal-organic frameworks, called SURMOFs, as "looms." The polymer threads are kept together by the chemical forces resulting from the weaving pattern, such that the molecular tissues are as flexible as conventional fabrics.

Explore further: Researchers use light to design defined molecule chains

More information: Hannah Rothfuss et al. Single-Chain Nanoparticles as Catalytic Nanoreactors, Journal of the American Chemical Society (2018). DOI: 10.1021/jacs.8b02135

Related Stories

Researchers use light to design defined molecule chains

December 15, 2016

Chemists of Karlsruhe Institute of Technology (KIT) have succeeded in specifically controlling the setup of precision polymers by light-induced chemical reactions. The new method allows for the precise, planned arrangement ...

Metal-organic frameworks used as looms

February 15, 2017

Researchers of Karlsruhe Institute of Technology (KIT) have made major progress in the production of two-dimensional polymer-based materials. To produce cloths from monomolecular threads, the scientists used SURMOFs, i.e. ...

3-D inks that can be erased selectively

August 14, 2018

3-D printing allows for the efficient manufacture of complex geometries. A promising method is direct laser writing—a computer-controlled, focused laser beam acts as a pen and produces the desired structure in a photoresist. ...

Researchers study DNA polymerases at the molecular level

September 19, 2018

Complex biological systems can be described as a network of chemical processes that take place in molecules. The scientists of the "ChemLife" research initiative at the University of Konstanz are working together in an equally ...

A molecular ripcord for chemical reactions

April 6, 2009

Researchers at Eindhoven University of Technology (the Netherlands) have developed an entirely new method for starting chemical reactions. For the first time they used mechanical forces to control catalytic activity - one ...

Recommended for you

Stealth-cap technology for light-emitting nanoparticles

November 14, 2018

A team of scientists from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), in collaboration with researchers from Monash University Australia, has succeeded in significantly increasing the stability and biocompatibility of ...

Detecting light in a different dimension

November 13, 2018

Scientists from the Center for Functional Nanomaterials (CFN)—a U.S. Department of Energy (DOE) Office of Science User Facility at Brookhaven National Laboratory—have dramatically improved the response of graphene to ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.