Wastewater recycling instead of disposal

September 11, 2018, Swiss Federal Institute of Aquatic Science and Technology
Air-stripping installation for nitrogen recovery at the Opfikon wastewater treatment plant. Credit: Eawag, Peter Schönenberger

Wastewater smells foul and is full of pathogens. For these reasons it is usually removed and disposed of quickly. The out-of-sight-out-of-mind strategy is, however, costly and opportunities are lost. At Eawag's Info Day, experts in practice come together with researchers who are seeking new answers – for example, on how nutrients or heat can be recovered from wastewater.

Switzerland is rightly proud of its strategy. It guarantees hygiene in communities, protects water as a resource (eg. for ) and successfully prevents over-fertilisation of rivers and lakes. But this comes at a price: the replacement value of the Swiss wastewater infrastructure amounts to more than 120 billion francs. New challenges, for example the removal of micropollutants or climate change, will not make the system less costly. In addition, it is becoming ever clearer that wastewater is not simply a hazard to be removed, but it also embodies resources such as heat or nutrients that it would be more sensible to recycle instead of literally flushing them away.

How these materials can best be recovered, as well as the limits of this recycling, is the topic of discussion today at the Eawag Info Day in Dübendorf among nearly 200 experts from scientific fields, administration, policy and practice. They are focusing on the topic "Wastewater as a resource" and will be exchanging knowledge about future-oriented technologies for the recovery of valuable resources from the unpleasant brown brew.

For example energy

Take energy, for example: there is a great deal of energy in wastewater that was previously absorbed in the water for hot showers or washing. In new buildings today, this is the major source of energy leakage. In both decentralised situations, before it leaves the building, and centralised – for example in a main collecting channel – such energy can be partially recovered. The fact that the wastewater is then somewhat cooler is, in addition, an advantage in these days of ever-warmer brooks and rivers. Such recovery installations have to be planned early on, otherwise other energy sources have an advantage. Energy is also present in faeces, which contain a lot of carbon. An Eawag project shows how in countries in the global south, pellets are manufactured from faecal sludge and used for heating the kilns used in tile manufacture. The advantage of this concept is that it can become a small business for entrepreneurs, with the view to operating long term. Electricity can be produced from wastewater with ever-greater efficiency via gas from purification plants, produced in anaerobic degradation processes. As thus become energy suppliers, their providers in a liberalised market are suddenly faced with new questions, such as When would the recovered energy be better used at source and when should it be sold for profit?

Costs and values – two different things

Wastewater recycling sounds good, but opportunities and costs have to be realistically evaluated. The total wastewater disposal in Switzerland costs c. 300 francs per resident per year. By contrast, electricity can be produced from sewage sludge for around three francs per head, and the phosphate in wastewater is currently valued at around one franc per head of the population at world market prices. No one, in other words, will get rich from this practice. Only when the whole picture is examined, and priorities supported by society are set, does the balance sheet start to look better. A switch from the present wastewater disposal to modern wastewater recycling keeps damaging micropollutants out of the most diverse waters and avoids the emission of greenhouse gases. In areas where water is scarce, it can be worthwhile to produce drinking water from wastewater, and innovative fertiliser production in treatment plants can lead to new opportunities in agriculture. This is not easily expressed in tons or francs, but must be part of the cost/income equation.

Research into these questions and the discourse between research and practice must be driven forward so that the recovery of energy, nutrients and water can one day be as successful and natural as conventional treatment has been up to now. The Eawag Info Day 2018 contributes to this quest.

Explore further: Nature holds key to nurturing green water treatment facilities

Related Stories

Drugs in wastewater contaminate drinking water

July 20, 2015

Both prescription and illegal drugs that are abused have been found in Canadian surface waters. New research shows that wastewater discharges flowing downstream have the potential to contaminate sources of drinking water ...

Microlitter—a challenge for wastewater treatment plants

May 15, 2018

Finnish Environment Institute Researcher and M.Sc. Julia Talvitie's doctoral dissertation indicates that wastewater treatment plants function well overall for microlitter removal. The vast majority (approx. 99%) of microlitter ...

A super-fine solution to sponge up micropollutants

January 8, 2016

A super-fine form of powdered activated carbon captures micropollutants more rapidly than the conventional kind and could by used in Swiss wastewater treatment plants, say EPFL researchers in a new study.

Recommended for you

Galactic center visualization delivers star power

March 21, 2019

Want to take a trip to the center of the Milky Way? Check out a new immersive, ultra-high-definition visualization. This 360-movie offers an unparalleled opportunity to look around the center of the galaxy, from the vantage ...

Ultra-sharp images make old stars look absolutely marvelous

March 21, 2019

Using high-resolution adaptive optics imaging from the Gemini Observatory, astronomers have uncovered one of the oldest star clusters in the Milky Way Galaxy. The remarkably sharp image looks back into the early history of ...

When more women make decisions, the environment wins

March 21, 2019

When more women are involved in group decisions about land management, the group conserves more—particularly when offered financial incentives to do so, according to a new University of Colorado Boulder study published ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.