How medicine literally gets under your skin

September 19, 2018 by Andrea Six, Swiss Federal Laboratories for Materials Science and Technology
How medicine literally gets under your skin
Credit: J. Am. Chem. Soc. (2018); doi: 10.1021/jacs.8b04511

If drugs are to enter the body painlessly and efficiently, they can be administered via skin patches. Researchers at Empa and the University of Fribourg are currently developing nano-containers for therapeutic agents that can be controlled by light.

Not every medication is suitable for oral administration as a pill or can be injected with a syringe. The skin – our largest organ – on the other hand offers a large and permeable surface to absorb active substances. Nicotine, painkillers and contraceptives can already be administered through the skin using patches. Researchers at Empa in St. Gallen and the Adolphe Merkle Institute at the University of Fribourg are currently developing a system, with which the effect of drugs can be controlled by switches. This allows precise control, for instance, of the dosage of active ingredients and opens up new possibilities for therapies with "transdermal" patches.

Light switches from nature

To ensure that the ingredients in the can be precisely controlled, the researchers have devised a molecular inspired by nature. "Our light switch works similarly to the retina in the human eye," says Luciano Boesel from Empa's Laboratory for Biomimetic Membranes and Textiles. Like the natural pigments in the eye, these synthetic photochromes can also be activated by light. The molecular switches were integrated into polymer nano-spheres, which were filled with test substances for initial experiments.

Credit: J. Am. Chem. Soc. (2018); doi: 10.1021/jacs.8b04511

When these nano-reactors are exposed to light of a certain wavelength, they change their structure. Thus, their surface becomes permeable and the chemically active substances can diffuse from the nano-reactor into the environment. If the color of the light changes, say from green to red, the chemical reaction stops within seconds. The shell of the nano-reactors turns impermeable and the reaction vessels are ready for the next use.

In future, these nano-reactors with integrated light switch will serve as reservoirs for . "Light switches can be used for the entire spectrum between 450 and 700 nanometers wavelength, i.e. for colored light from blue to red," explains Boesel. This opens up many possibilities for the controlled delivery of several drugs or for complex reaction cascades in a single patch. The team is now working with the support of the Swiss National Science Foundation (SNSF) and the National Center of Competence in Research for Bio-Inspired Materials to further optimize the nano-reactor with light switch. "First, we will investigate the precisely controllable release of substances that are already approved for application through the skin, such as certain painkillers," says the researcher. In the future, however, many additional treatments using "band-aids with light switches" are feasible.

Explore further: Controlling nickelate nano-switches with light

More information: Omar Rifaie-Graham et al. Wavelength-Selective Light-Responsive DASA-Functionalized Polymersome Nanoreactors, Journal of the American Chemical Society (2018). DOI: 10.1021/jacs.8b04511

Related Stories

Controlling nickelate nano-switches with light

August 14, 2018

Dr. Giordano Mattoni, quantum researcher at TU Delft, and his collaborators have shown that the nano-electronic phase transition in a class of materials known as nickelates can be controlled by laser light. Their findings, ...

A safe and effective way to whiten teeth

July 18, 2018

In the age of Instagram and Snapchat, everyone wants to have perfect pearly whites. To get a brighter smile, consumers can opt for over the counter teeth-whitening treatments or a trip to the dentist to have their teeth bleached ...

Soft sensors for smart textiles

March 14, 2017

Researchers from Empa in St. Gallen have succeeded in producing optic fibers for sensors that are ideal for textiles. This would enable hospitals to monitor whether a patient is developing pressure sores, for instance.

Split light wave switches nano-enhancers of light on and off

March 11, 2016

In collaboration with Philips Lighting, researchers from the FOM institutes AMOLF and DIFFER have found a way to switch the antenna effect of metal nanoparticles on and off. Nanoantennae are sensitive receivers and enhancers ...

Recommended for you

How to mass produce cell-sized robots

October 23, 2018

Tiny robots no bigger than a cell could be mass-produced using a new method developed by researchers at MIT. The microscopic devices, which the team calls "syncells" (short for synthetic cells), might eventually be used to ...

Nanosized ferroelectrics become a reality

October 22, 2018

Using ferroelectricity instead of magnetism in computer memory saves energy. If ferroelectric bits were nanosized, this would also save space. But conventional wisdom dictates that ferroelectric properties disappear when ...

Taking steps toward a wearable artificial kidney

October 17, 2018

There just aren't enough kidney transplants available for the millions of people with renal failure. Aside from a transplant, the only alternative for patients is to undergo regular dialysis sessions to clear harmful cellular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.