Device uses graphene plasmons to convert mid-infrared light to electrical signals

September 19, 2018, Yale University

A team of researchers has developed a device that uses the material graphene to detect mid-infrared light and efficiently convert it to electrical signal at room temperature. It's a breakthrough that could lead to better communications systems, thermal imagers and other technologies.

Published in Nature Materials, the study is a collaboration between the laboratories of Fengnian Xia, Barton L. Weller Associate Professor in Engineering and Science and F. Javier Garcia de Abajo of The Institute of Photonic Sciences (ICFO), Spain.

Mid-infrared radiation at 8 to 14 micrometers is extremely useful in thermal imaging and revealing molecular-specific spectroscopic information. In addition, such radiation can propagate in the air without significant loss, indicating its tremendous potential in free-space communications and remote sensing. However, conventional mid-infrared infrared detectors typically are very slow due to the large thermal capacity, leading to a long time constant for heat dissipation.

The device demonstrated in this study takes advantage of the unique properties of the highly conductive, atomically thin graphene, which is a single layer of carbon atoms, and its plasmon—a quantum of its collective electron oscillations.

"Graphene is a kind of material that can convert mid-infrared light into plasmons and then subsequently the plasmons can convert into heat," said Qiushi Guo, a Ph.D. student in Xia's lab and first author of the study. "What is truly unique about graphene is that the electron temperature rise caused by plasmon decay is much higher than that of other materials"

Graphene's resistance is very insensitive to temperature at room temperature, as a result, it's difficult to electrically detect mid-infrared light except at extremely cold temperatures, which means it can't be integrated into usable devices. To that end, in this work the researchers developed a new device that features graphene disk plasmonic resonators connected by quasi-one-dimensional nanoribbons. It can effectively detect the mid-infrared light at room temperature.

"Our device has artificial nanostructures that convert light into plasmons, and subsequently into electronic heat," Guo said. "Its resistance is also very sensitive to the temperature rise. Unlike that in graphene sheet, in narrow graphene nanoribbons, electron transport depends strongly on electron's thermal energy."

What's more, Guo said, is that the device responds very promptly to the mid-infrared radiations. "Existing room-temperature thermal sensors in general have a large heat capacity and well-designed thermal insulation structures. They usually take milliseconds to heat up. But for graphene, it can be superfast—one nanosecond, or just 1 billionth of a second." This makes the detector highly suitable for high-speed free-space communication applications in mid-infrared, which is beyond the reach of conventional microbolometers operating at room temperature.

The device is simple and scalable. Remarkably, the footprint can be even smaller than the wavelength of light. "It offers many new opportunities in mid-infrared photonics," Xia said. "Building a high resolution mid-infrared camera with subwavelength pixels, for example, or to be integrated on photonic integrated circuits to enable mid-infrared spectrometers on a single chip."

Explore further: High-speed and on-silicon-chip graphene blackbody emitters

More information: Qiushi Guo et al. Efficient electrical detection of mid-infrared graphene plasmons at room temperature, Nature Materials (2018). DOI: 10.1038/s41563-018-0157-7

Related Stories

High-speed and on-silicon-chip graphene blackbody emitters

April 4, 2018

High-speed light emitters integrated on silicon chips can enable novel architectures for silicon-based optoelectronics. However, compound-semiconductor-based light emitters face major challenges for their integration with ...

Thermal camouflage disguises hot and cold

June 27, 2018

Hunters don camouflage clothing to blend in with their surroundings. But thermal camouflage—or the appearance of being the same temperature as one's environment—is much more difficult. Now researchers, reporting in ACS' ...

The photoexcited graphene puzzle solved

May 14, 2018

Light detection and control lies at the heart of many modern device applications, such as the cameras in phones. Using graphene as a light-sensitive material for light detectors offers significant improvements with respect ...

Recommended for you

Meteorite source in asteroid belt not a single debris field

February 17, 2019

A new study published online in Meteoritics and Planetary Science finds that our most common meteorites, those known as L chondrites, come from at least two different debris fields in the asteroid belt. The belt contains ...

Diagnosing 'art acne' in Georgia O'Keeffe's paintings

February 17, 2019

Even Georgia O'Keeffe noticed the pin-sized blisters bubbling on the surface of her paintings. For decades, conservationists and scholars assumed these tiny protrusions were grains of sand, kicked up from the New Mexico desert ...

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...


Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (2) Sep 19, 2018
Pretty neato, here is the non-paywall version:
Thorium Boy
1 / 5 (2) Sep 21, 2018
Thermal images have not followed other electronics and imagers and dropped in price much. If they can replace bolometer-based imagers that cost five-figures for VGA resolution, it would be good.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.