Scientists identify enzyme that could accelerate biofuel production

August 20, 2018, Tokyo Institute of Technology
The red alga C. merolae grown in culture in the laboratory Credit: Sousuke Imamura

Researchers at the Tokyo Institute of Technology report on an enzyme belonging to the glycerol-3-phosphate acyltransferase (GPAT) family as a promising target for increasing biofuel production from the red alga Cyanidioschyzon merolae.

Algae are known to store up large amounts of oils called triacylglycerols (TAGs) under adverse conditions such as nitrogen deprivation. Understanding precisely how they do so is of key interest to the biotechnology sector, as TAGs can be converted to biodiesel. To this end, scientists are investigating the unicellular C. merolae as a model organism for exploring how to improve TAG production.

A study led by Sousuke Imamura at the Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology (Tokyo Tech), has now shown that an enzyme called GPAT1 plays an important role in TAG accumulation in C. merolae even under normal growth conditions—that is, without the need to induce stress.

Remarkably, the team demonstrated that TAG productivity could be increased by more than 56 times in a C. merolae strain overexpressing GPAT1 compared with the control strain, without any negative effects on algal growth.

Their findings, published in Scientific Reports, follow up previous research by Imamura and others that had suggested two GPATs, GPAT1 and GPAT2, may be closely involved in TAG accumulation in C. merolae.

Lipid droplet formation was clearly observed even under normal growth conditions in the GPAT1 overexpression strain. These lipid droplets (detected as green signals) mainly consist of TAGs. Credit: Sousuke Imamura

"Our results indicate that the reaction catalyzed by the GPAT1 is a rate-limiting step for TAG synthesis in C. merolae, and would be a potential target for improvement of TAG productivity in microalgae," the researchers say.

The team plans to continue exploring how GPAT1 and GPAT2 might both be involved in TAG accumulation. An important next step will be to identify that control the expression of individual genes of interest.

"If we can identify such regulators and modify their function, TAG productivity will be further improved because transcription factors affect the expression of a wide range of genes including GPAT1-related genes," they say. "This kind of approach based on the fundamental molecular mechanism of TAG synthesis should lead to successful commercial using microalgae."

TAG productivity (mg/L/day) was drastically increased compared with that of the control, and increased with incubation time to 1.2 (representing a 29.9-fold increase compared with the control), 3.6 (a 24.7-fold increase), and 5.7 (a 56.1-fold increase) during the mid-exponential, late-exponential and after-exponential phases, respectively. These results indicate that GPAT1 overexpression improves TAG productivity, and the step catalyzed by GPAT1 is a suitable target for the improvement of TAG production in this alga. Credit: Sosuke Imamura

Explore further: Linking cytosolic and chloroplast ribosome biogenesis in plants

More information: Satoshi Fukuda et al, Accelerated triacylglycerol production without growth inhibition by overexpression of a glycerol-3-phosphate acyltransferase in the unicellular red alga Cyanidioschyzon merolae, Scientific Reports (2018). DOI: 10.1038/s41598-018-30809-8

Related Stories

Genetic manipulation for algal biofuel production

September 7, 2015

Studies of the genes involved in oil synthesis in microalgae allow scientists to use a gene promoter to increase algal production of triacylglycerols, which in turn enhances potential biofuel yields

Feeding plants to this algae could fuel your car

July 18, 2018

Researchers at Los Alamos National Laboratory and partner institutions provided today the first published report of algae using raw plants as a carbon energy source. The research shows that a freshwater production strain ...

Biofuel produced by microalgae

February 28, 2017

Scientists at Tokyo Institute of Technology have identified unique lysophosphatidic acid acyltransferases as being the central enzymes for triacylglycerol synthesis by oleaginous alga Nannochloropsis, thus uncovering the ...

Toward the next biofuel: Secrets of Fistulifera solaris

February 2, 2015

Biofuels are an attractive alternative to fossil fuels, but a key challenge in efforts to develop carbon-neutral, large-scale methods to produce biofuels is finding the right organism for the job. One emerging candidate is ...

Recommended for you

How quinoa plants shed excess salt and thrive in saline soils

September 21, 2018

Barely heard of a couple of years ago, quinoa today is common on European supermarket shelves. The hardy plant thrives even in saline soils. Researchers from the University of Würzburg have now determined how the plant gets ...

Decoding the structure of an RNA-based CRISPR system

September 20, 2018

Over the past several years, CRISPR-Cas9 has moved beyond the lab bench and into the public zeitgeist. This gene-editing tool CRISPR-Cas9 holds promise for correcting defects inside individual cells and potentially healing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.