Physicists propose new model to study pairing properties of nuclei

August 17, 2018, Ohio University
Physicists propose new model to study pairing properties of nuclei
(L to R) Dr. Madappa Prakash, Md. Abdullah Al Mamun, and Dr. Constantinos Constantinou. Credit: Ohio University

A team of Ohio University nuclear physicists has proposed a new theoretical model for calculating pairing properties of atomic nuclei including those found in extreme astrophysical environments. As in some solids in which two interacting electrons pair up to act as one object that leads to superconductivity, interacting neutrons (or protons) in nuclei pair up to cause superfluidity (or superconductivity) in nuclei.

The new facilitates rapid and efficient calculations to be performed when examining characteristics of highly neutron- or proton-rich exotic found in supernova explosions and when stars collide, such as in neutron star mergers.

Ohio physics doctoral student Md. Abdullah Al Mamun, postdoctoral researcher Dr. Constantinos Constantinou, and Dr. Madappa Prakash published their research, "Pairing properties from random distributions of single-particle energy levels", in Physical Review C, a journal of the American Physical Society.

The new "Random Spacing Model" employs that neutrons and protons can occupy in an individual nucleus randomly around the appropriate energies. Averages over thousands of such easily generated random configurations enable statistically-based bounds to be placed on the thermal properties such as entropy, specific heat, etc., of nuclei. Based on methods appropriate for large number systems, researchers had predicted a sharp phase transition in nuclei, which has not been observed experimentally.

What has been observed instead is a smooth S-shape in the specific heat. Nuclei and inherit large fluctuations in pairing properties owing to their small sizes. The Random Spacing Model with the inclusion of fluctuations reproduces the observed S-shape, which is heartening.

Predictions of the Random Spacing Model enable exploration of the phenomenon in astrophysical sites which harbor exotic nuclei, paving the way to pinning down how elements heavier than iron were synthesized in our universe, a long-standing problem that awaits resolution.

Explore further: Unresolved puzzles in exotic nuclei

More information: M. A. Al Mamun et al. Pairing properties from random distributions of single-particle energy levels, Physical Review C (2018). DOI: 10.1103/PhysRevC.97.064324

Related Stories

Unresolved puzzles in exotic nuclei

March 27, 2018

Research into the origin of elements is still of great interest. Many unstable atomic nuclei live long enough to be able to serve as targets for further nuclear reactions—especially in hot environments like the interior ...

Probing nobelium with laser light

June 27, 2018

Sizes and shapes of nuclei with more than 100 protons were so far experimentally inaccessible. Laser spectroscopy is an established technique in measuring fundamental properties of exotic atoms and their nuclei. For the first ...

New method to better understand atomic nuclei

September 24, 2015

The precise structure of atomic nuclei is an old problem that has not been fully solved yet, and it also constitutes a current research focus in the field of natural sciences. Together with colleagues from Bonn University, ...

Recommended for you

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.